These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

170 related articles for article (PubMed ID: 29099403)

  • 41. Optogenetic Peripheral Nerve Immunogenicity.
    Maimon BE; Diaz M; Revol ECM; Schneider AM; Leaker B; Varela CE; Srinivasan S; Weber MB; Herr HM
    Sci Rep; 2018 Sep; 8(1):14076. PubMed ID: 30232391
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Optogenetic approaches for investigating neural pathways implicated in schizophrenia and related disorders.
    Cho KK; Sohal VS
    Hum Mol Genet; 2014 Sep; 23(R1):R64-8. PubMed ID: 24824218
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Temporally precise labeling and control of neuromodulatory circuits in the mammalian brain.
    Lee D; Creed M; Jung K; Stefanelli T; Wendler DJ; Oh WC; Mignocchi NL; Lüscher C; Kwon HB
    Nat Methods; 2017 May; 14(5):495-503. PubMed ID: 28369042
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Modeling the Spatiotemporal Dynamics of Light and Heat Propagation for In Vivo Optogenetics.
    Stujenske JM; Spellman T; Gordon JA
    Cell Rep; 2015 Jul; 12(3):525-34. PubMed ID: 26166563
    [TBL] [Abstract][Full Text] [Related]  

  • 45. A novel analgesic approach to optogenetically and specifically inhibit pain transmission using TRPV1 promoter.
    Li B; Yang XY; Qian FP; Tang M; Ma C; Chiang LY
    Brain Res; 2015 Jun; 1609():12-20. PubMed ID: 25797803
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Local and retrograde gene transfer into primate neuronal pathways via adeno-associated virus serotype 8 and 9.
    Masamizu Y; Okada T; Kawasaki K; Ishibashi H; Yuasa S; Takeda S; Hasegawa I; Nakahara K
    Neuroscience; 2011 Oct; 193():249-58. PubMed ID: 21782903
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Optogenetics and Chemogenetics.
    Vlasov K; Van Dort CJ; Solt K
    Methods Enzymol; 2018; 603():181-196. PubMed ID: 29673525
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Effect of optogenetic manipulation of accumbal medium spiny neurons expressing dopamine D2 receptors in cocaine-induced behavioral sensitization.
    Kang BJ; Song SS; Wen L; Hong KP; Augustine GJ; Baik JH
    Eur J Neurosci; 2017 Aug; 46(4):2056-2066. PubMed ID: 28708260
    [TBL] [Abstract][Full Text] [Related]  

  • 49. [Therapeutic potential of optogenetic neuromodulation].
    Vandecasteele M; Senova YS; Palfi S; Dugué GP
    Med Sci (Paris); 2015 Apr; 31(4):404-16. PubMed ID: 25958759
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Principles of designing interpretable optogenetic behavior experiments.
    Allen BD; Singer AC; Boyden ES
    Learn Mem; 2015 Apr; 22(4):232-8. PubMed ID: 25787711
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Microbial Rhodopsin Optogenetic Tools: Application for Analyses of Synaptic Transmission and of Neuronal Network Activity in Behavior.
    Glock C; Nagpal J; Gottschalk A
    Methods Mol Biol; 2015; 1327():87-103. PubMed ID: 26423970
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Optogenetic Tools for Subcellular Applications in Neuroscience.
    Rost BR; Schneider-Warme F; Schmitz D; Hegemann P
    Neuron; 2017 Nov; 96(3):572-603. PubMed ID: 29096074
    [TBL] [Abstract][Full Text] [Related]  

  • 53. High-efficiency transduction and specific expression of ChR2opt for optogenetic manipulation of primary cortical neurons mediated by recombinant adeno-associated viruses.
    Jin L; Lange W; Kempmann A; Maybeck V; Günther A; Gruteser N; Baumann A; Offenhäusser A
    J Biotechnol; 2016 Sep; 233():171-80. PubMed ID: 27416794
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Optogenetics in Drosophila Neuroscience.
    Riemensperger T; Kittel RJ; Fiala A
    Methods Mol Biol; 2016; 1408():167-75. PubMed ID: 26965122
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Wiring the depressed brain: optogenetic and chemogenetic circuit interrogation in animal models of depression.
    Muir J; Lopez J; Bagot RC
    Neuropsychopharmacology; 2019 May; 44(6):1013-1026. PubMed ID: 30555161
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Selective Manipulation of Neural Circuits.
    Park HG; Carmel JB
    Neurotherapeutics; 2016 Apr; 13(2):311-24. PubMed ID: 26951545
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Detection of optogenetic stimulation in somatosensory cortex by non-human primates--towards artificial tactile sensation.
    May T; Ozden I; Brush B; Borton D; Wagner F; Agha N; Sheinberg DL; Nurmikko AV
    PLoS One; 2014; 9(12):e114529. PubMed ID: 25541938
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Injections of AAV Vectors for Optogenetics in Anesthetized and Awake Behaving Non-Human Primate Brain.
    Kojima Y; Ting JT; Soetedjo R; Gibson SD; Horwitz GD
    J Vis Exp; 2021 Aug; (174):. PubMed ID: 34424236
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Optogenetic Approaches to Target Specific Neural Circuits in Post-stroke Recovery.
    Cheng MY; Aswendt M; Steinberg GK
    Neurotherapeutics; 2016 Apr; 13(2):325-40. PubMed ID: 26701667
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Arrays of microscopic organic LEDs for high-resolution optogenetics.
    Steude A; Witts EC; Miles GB; Gather MC
    Sci Adv; 2016 May; 2(5):e1600061. PubMed ID: 27386540
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.