These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

187 related articles for article (PubMed ID: 29099582)

  • 1. Raman-Activated Droplet Sorting (RADS) for Label-Free High-Throughput Screening of Microalgal Single-Cells.
    Wang X; Ren L; Su Y; Ji Y; Liu Y; Li C; Li X; Zhang Y; Wang W; Hu Q; Han D; Xu J; Ma B
    Anal Chem; 2017 Nov; 89(22):12569-12577. PubMed ID: 29099582
    [TBL] [Abstract][Full Text] [Related]  

  • 2. On-Chip Photoacoustics-Activated Cell Sorting (PA-ACS) for Label-Free and High-Throughput Detection and Screening of Microalgal Cells.
    Duan X; Zheng X; Liu Z; Dong T; Luo Y; Yan W; Wang C; Song C
    Anal Chem; 2024 Jan; 96(3):1301-1309. PubMed ID: 38193144
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Towards high-throughput microfluidic Raman-activated cell sorting.
    Zhang Q; Zhang P; Gou H; Mou C; Huang WE; Yang M; Xu J; Ma B
    Analyst; 2015 Sep; 140(18):6163-74. PubMed ID: 26225617
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Positive dielectrophoresis-based Raman-activated droplet sorting for culture-free and label-free screening of enzyme function in vivo.
    Wang X; Xin Y; Ren L; Sun Z; Zhu P; Ji Y; Li C; Xu J; Ma B
    Sci Adv; 2020 Aug; 6(32):eabb3521. PubMed ID: 32821836
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Raman activated cell sorting.
    Song Y; Yin H; Huang WE
    Curr Opin Chem Biol; 2016 Aug; 33():1-8. PubMed ID: 27100046
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Raman-activated cell sorting based on dielectrophoretic single-cell trap and release.
    Zhang P; Ren L; Zhang X; Shan Y; Wang Y; Ji Y; Yin H; Huang WE; Xu J; Ma B
    Anal Chem; 2015 Feb; 87(4):2282-9. PubMed ID: 25607599
    [TBL] [Abstract][Full Text] [Related]  

  • 7. High-throughput label-free molecular fingerprinting flow cytometry.
    Hiramatsu K; Ideguchi T; Yonamine Y; Lee S; Luo Y; Hashimoto K; Ito T; Hase M; Park JW; Kasai Y; Sakuma S; Hayakawa T; Arai F; Hoshino Y; Goda K
    Sci Adv; 2019 Jan; 5(1):eaau0241. PubMed ID: 30746443
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Screening of Astaxanthin-Hyperproducing Haematococcus pluvialis Using Fourier Transform Infrared (FT-IR) and Raman Microspectroscopy.
    Liu J; Huang Q
    Appl Spectrosc; 2016 Oct; 70(10):1639-1648. PubMed ID: 27296305
    [TBL] [Abstract][Full Text] [Related]  

  • 9. High-throughput deterministic single-cell encapsulation and droplet pairing, fusion, and shrinkage in a single microfluidic device.
    Schoeman RM; Kemna EW; Wolbers F; van den Berg A
    Electrophoresis; 2014 Feb; 35(2-3):385-92. PubMed ID: 23856757
    [TBL] [Abstract][Full Text] [Related]  

  • 10. An integrated optofluidic platform for Raman-activated cell sorting.
    Lau AY; Lee LP; Chan JW
    Lab Chip; 2008 Jul; 8(7):1116-20. PubMed ID: 18584087
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Ultrafast surface enhanced resonance Raman scattering detection in droplet-based microfluidic systems.
    Cecchini MP; Hong J; Lim C; Choo J; Albrecht T; Demello AJ; Edel JB
    Anal Chem; 2011 Apr; 83(8):3076-81. PubMed ID: 21413700
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Microfluidic device for the high-throughput and selective encapsulation of single target cells.
    Nakamura M; Matsumoto M; Ito T; Hidaka I; Tatsuta H; Katsumoto Y
    Lab Chip; 2024 May; 24(11):2958-2967. PubMed ID: 38722067
    [TBL] [Abstract][Full Text] [Related]  

  • 13. CotA laccase: high-throughput manipulation and analysis of recombinant enzyme libraries expressed in E. coli using droplet-based microfluidics.
    Beneyton T; Coldren F; Baret JC; Griffiths AD; Taly V
    Analyst; 2014 Jul; 139(13):3314-23. PubMed ID: 24733162
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Continuous cell sorting in a flow based on single cell resonance Raman spectra.
    McIlvenna D; Huang WE; Davison P; Glidle A; Cooper J; Yin H
    Lab Chip; 2016 Apr; 16(8):1420-9. PubMed ID: 26974400
    [TBL] [Abstract][Full Text] [Related]  

  • 15. In vivo live cell imaging for the quantitative monitoring of lipids by using Raman microspectroscopy.
    Hosokawa M; Ando M; Mukai S; Osada K; Yoshino T; Hamaguchi HO; Tanaka T
    Anal Chem; 2014 Aug; 86(16):8224-30. PubMed ID: 25073083
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Recent Advances on Sorting Methods of High-Throughput Droplet-Based Microfluidics in Enzyme Directed Evolution.
    Fu X; Zhang Y; Xu Q; Sun X; Meng F
    Front Chem; 2021; 9():666867. PubMed ID: 33996758
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Three step flow focusing enables image-based discrimination and sorting of late stage 1 Haematococcus pluvialis cells.
    Kraus D; Kleiber A; Ehrhardt E; Leifheit M; Horbert P; Urban M; Gleichmann N; Mayer G; Popp J; Henkel T
    PLoS One; 2021; 16(3):e0249192. PubMed ID: 33780476
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Detachable Acoustophoretic System for Fluorescence-Activated Sorting at the Single-Droplet Level.
    Li P; Ma Z; Zhou Y; Collins DJ; Wang Z; Ai Y
    Anal Chem; 2019 Aug; 91(15):9970-9977. PubMed ID: 31179691
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Droplet sorting based on the number of encapsulated particles using a solenoid valve.
    Cao Z; Chen F; Bao N; He H; Xu P; Jana S; Jung S; Lian H; Lu C
    Lab Chip; 2013 Jan; 13(1):171-8. PubMed ID: 23160342
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Fluorescence-Activated Droplet Sorting for Single-Cell Directed Evolution.
    Vallejo D; Nikoomanzar A; Paegel BM; Chaput JC
    ACS Synth Biol; 2019 Jun; 8(6):1430-1440. PubMed ID: 31120731
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.