These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

39 related articles for article (PubMed ID: 29099583)

  • 1. Empirical in operando analysis of the charge carrier dynamics in hematite photoanodes by PEIS, IMPS and IMVS.
    Klotz D; Ellis DS; Dotan H; Rothschild A
    Phys Chem Chem Phys; 2016 Sep; 18(34):23438-57. PubMed ID: 27524381
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Ge-Doped Hematite with FeCoNi-B
    Wang Y; Cui S; Tian Z; Han M; Zhao T; Li W
    Small; 2024 May; ():e2400316. PubMed ID: 38716992
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Better Together: Ilmenite/Hematite Junctions for Photoelectrochemical Water Oxidation.
    Berardi S; Kopula Kesavan J; Amidani L; Meloni EM; Marelli M; Boscherini F; Caramori S; Pasquini L
    ACS Appl Mater Interfaces; 2020 Oct; 12(42):47435-47446. PubMed ID: 32986954
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Subtraction Descriptors in Machine Learning for Optimizing the Cocatalyst Effect of Cobalt Phosphate on Hematite Photoanodes.
    Chen S; Nagai Y; Pan Z; Katayama K
    ACS Appl Mater Interfaces; 2024 Jul; 16(26):33611-33619. PubMed ID: 38899937
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Combined Effect of Underlayer and Deposition Solution to Optimize the Alignment of Hematite Photoanodes.
    Idei T; Pan Z; Katayama K
    Langmuir; 2024 Jun; 40(22):11526-11533. PubMed ID: 38767843
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Reaction kinetics and interplay of two different surface states on hematite photoanodes for water oxidation.
    Li J; Wan W; Triana CA; Chen H; Zhao Y; Mavrokefalos CK; Patzke GR
    Nat Commun; 2021 Jan; 12(1):255. PubMed ID: 33431853
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Precise analyses of photoelectrochemical reactions on particulate Zn
    Kageshima Y; Takano H; Nishizawa M; Takagi F; Kumagai H; Teshima K; Domen K; Nishikiori H
    Chem Sci; 2024 May; 15(18):6679-6689. PubMed ID: 38725509
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Assessing the Charge Carrier Dynamics at Hybrid Interfaces of Organic Photoanodes for Solar Fuels.
    Wieczorek A; Liu Y; Cho HH; Sivula K
    J Phys Chem Lett; 2024 Jun; 15(24):6347-6354. PubMed ID: 38857117
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Dual Functionality of Surface States in Dictating Photocurrent Generation of Au Nanocluster-Sensitized TiO
    Alam S; Ali M; Bang JH
    ACS Appl Mater Interfaces; 2024 Jun; 16(23):30068-30076. PubMed ID: 38820718
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Photosensitive Thin Films Based on Drop Cast and Langmuir-Blodgett Hydrophilic and Hydrophobic CdS Nanoparticles.
    Nagamine M; Osial M; Widera-Kalinowska J; Jackowska K; Krysiński P
    Nanomaterials (Basel); 2020 Dec; 10(12):. PubMed ID: 33291512
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Highly active deficient ternary sulfide photoanode for photoelectrochemical water splitting.
    Wang H; Xia Y; Li H; Wang X; Yu Y; Jiao X; Chen D
    Nat Commun; 2020 Jun; 11(1):3078. PubMed ID: 32555382
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Trade-off between Zr Passivation and Sn Doping on Hematite Nanorod Photoanodes for Efficient Solar Water Oxidation: Effects of a ZrO2 Underlayer and FTO Deformation.
    Subramanian A; Annamalai A; Lee HH; Choi SH; Ryu J; Park JH; Jang JS
    ACS Appl Mater Interfaces; 2016 Aug; 8(30):19428-37. PubMed ID: 27420603
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Revealing the Role of TiO2 Surface Treatment of Hematite Nanorods Photoanodes for Solar Water Splitting.
    Li X; Bassi PS; Boix PP; Fang Y; Wong LH
    ACS Appl Mater Interfaces; 2015 Aug; 7(31):16960-6. PubMed ID: 26192330
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Tin doping speeds up hole transfer during light-driven water oxidation at hematite photoanodes.
    Dunn HK; Feckl JM; Müller A; Fattakhova-Rohlfing D; Morehead SG; Roos J; Peter LM; Scheu C; Bein T
    Phys Chem Chem Phys; 2014 Nov; 16(44):24610-20. PubMed ID: 25310963
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Photoanodes based on TiO
    Kment S; Riboni F; Pausova S; Wang L; Wang L; Han H; Hubicka Z; Krysa J; Schmuki P; Zboril R
    Chem Soc Rev; 2017 Jun; 46(12):3716-3769. PubMed ID: 28397882
    [TBL] [Abstract][Full Text] [Related]  

  • 16. How titanium and iron are integrated into hematite to enhance the photoelectrochemical water oxidation: a review.
    Lv X; Zhang G; Wang M; Li G; Deng J; Zhong J
    Phys Chem Chem Phys; 2023 Jan; 25(3):1406-1420. PubMed ID: 36594624
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Solar water splitting: progress using hematite (α-Fe(2) O(3) ) photoelectrodes.
    Sivula K; Le Formal F; Grätzel M
    ChemSusChem; 2011 Apr; 4(4):432-49. PubMed ID: 21416621
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Revealing the Influence of Doping and Surface Treatment on the Surface Carrier Dynamics in Hematite Nanorod Photoanodes.
    Gurudayal ; Peter LM; Wong LH; Abdi FF
    ACS Appl Mater Interfaces; 2017 Nov; 9(47):41265-41272. PubMed ID: 29099583
    [TBL] [Abstract][Full Text] [Related]  

  • 19.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

  • 20.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 2.