BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

205 related articles for article (PubMed ID: 29099662)

  • 1. Local oxygen homeostasis during various neuronal network activity states in the mouse hippocampus.
    Schneider J; Berndt N; Papageorgiou IE; Maurer J; Bulik S; Both M; Draguhn A; Holzhütter HG; Kann O
    J Cereb Blood Flow Metab; 2019 May; 39(5):859-873. PubMed ID: 29099662
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Lactate as a supplemental fuel for synaptic transmission and neuronal network oscillations: Potentials and limitations.
    Kann O
    J Neurochem; 2024 May; 168(5):608-631. PubMed ID: 37309602
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Early alterations in hippocampal perisomatic GABAergic synapses and network oscillations in a mouse model of Alzheimer's disease amyloidosis.
    Hollnagel JO; Elzoheiry S; Gorgas K; Kins S; Beretta CA; Kirsch J; Kuhse J; Kann O; Kiss E
    PLoS One; 2019; 14(1):e0209228. PubMed ID: 30645585
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Induced sharp wave-ripple complexes in the absence of synaptic inhibition in mouse hippocampal slices.
    Nimmrich V; Maier N; Schmitz D; Draguhn A
    J Physiol; 2005 Mar; 563(Pt 3):663-70. PubMed ID: 15661820
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Gamma oscillations in the hippocampus require high complex I gene expression and strong functional performance of mitochondria.
    Kann O; Huchzermeyer C; Kovács R; Wirtz S; Schuelke M
    Brain; 2011 Feb; 134(Pt 2):345-58. PubMed ID: 21183487
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Choline-mediated modulation of hippocampal sharp wave-ripple complexes in vitro.
    Fischer V; Both M; Draguhn A; Egorov AV
    J Neurochem; 2014 Jun; 129(5):792-805. PubMed ID: 24673342
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Oxygen consumption rates during three different neuronal activity states in the hippocampal CA3 network.
    Huchzermeyer C; Berndt N; Holzhütter HG; Kann O
    J Cereb Blood Flow Metab; 2013 Feb; 33(2):263-71. PubMed ID: 23168532
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Cellular and network mechanisms underlying spontaneous sharp wave-ripple complexes in mouse hippocampal slices.
    Maier N; Nimmrich V; Draguhn A
    J Physiol; 2003 Aug; 550(Pt 3):873-87. PubMed ID: 12807984
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Properties and dynamics of inhibitory synaptic communication within the CA3 microcircuits of pyramidal cells and interneurons expressing parvalbumin or cholecystokinin.
    Kohus Z; Káli S; Rovira-Esteban L; Schlingloff D; Papp O; Freund TF; Hájos N; Gulyás AI
    J Physiol; 2016 Jul; 594(13):3745-74. PubMed ID: 27038232
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Propagation of specific network patterns through the mouse hippocampus.
    Both M; Bähner F; von Bohlen und Halbach O; Draguhn A
    Hippocampus; 2008; 18(9):899-908. PubMed ID: 18493949
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A detailed anatomical and mathematical model of the hippocampal formation for the generation of sharp-wave ripples and theta-nested gamma oscillations.
    Aussel A; Buhry L; Tyvaert L; Ranta R
    J Comput Neurosci; 2018 Dec; 45(3):207-221. PubMed ID: 30382451
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Perisomatic feedback inhibition underlies cholinergically induced fast network oscillations in the rat hippocampus in vitro.
    Mann EO; Suckling JM; Hajos N; Greenfield SA; Paulsen O
    Neuron; 2005 Jan; 45(1):105-17. PubMed ID: 15629706
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Sharp wave-like activity in the hippocampus in vitro in mice lacking the gap junction protein connexin 36.
    Pais I; Hormuzdi SG; Monyer H; Traub RD; Wood IC; Buhl EH; Whittington MA; LeBeau FE
    J Neurophysiol; 2003 Apr; 89(4):2046-54. PubMed ID: 12686578
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Synaptic currents in anatomically identified CA3 neurons during hippocampal gamma oscillations in vitro.
    Oren I; Mann EO; Paulsen O; Hájos N
    J Neurosci; 2006 Sep; 26(39):9923-34. PubMed ID: 17005856
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Gamma oscillations and spontaneous network activity in the hippocampus are highly sensitive to decreases in pO2 and concomitant changes in mitochondrial redox state.
    Huchzermeyer C; Albus K; Gabriel HJ; Otáhal J; Taubenberger N; Heinemann U; Kovács R; Kann O
    J Neurosci; 2008 Jan; 28(5):1153-62. PubMed ID: 18234893
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Hippocampal Ripple Oscillations and Inhibition-First Network Models: Frequency Dynamics and Response to GABA Modulators.
    Donoso JR; Schmitz D; Maier N; Kempter R
    J Neurosci; 2018 Mar; 38(12):3124-3146. PubMed ID: 29453207
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Maintaining network activity in submerged hippocampal slices: importance of oxygen supply.
    Hájos N; Ellender TJ; Zemankovics R; Mann EO; Exley R; Cragg SJ; Freund TF; Paulsen O
    Eur J Neurosci; 2009 Jan; 29(2):319-27. PubMed ID: 19200237
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Energy substrates that fuel fast neuronal network oscillations.
    Galow LV; Schneider J; Lewen A; Ta TT; Papageorgiou IE; Kann O
    Front Neurosci; 2014; 8():398. PubMed ID: 25538552
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Coordinated Interaction between Hippocampal Sharp-Wave Ripples and Anterior Cingulate Unit Activity.
    Wang DV; Ikemoto S
    J Neurosci; 2016 Oct; 36(41):10663-10672. PubMed ID: 27733616
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Energy and Potassium Ion Homeostasis during Gamma Oscillations.
    Kann O; Hollnagel JO; Elzoheiry S; Schneider J
    Front Mol Neurosci; 2016; 9():47. PubMed ID: 27378847
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.