These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
371 related articles for article (PubMed ID: 29099761)
1. The Role of Carbohydrates in the Lipopolysaccharide (LPS)/Toll-Like Receptor 4 (TLR4) Signalling. Cochet F; Peri F Int J Mol Sci; 2017 Nov; 18(11):. PubMed ID: 29099761 [TBL] [Abstract][Full Text] [Related]
3. Activation of Human Toll-like Receptor 4 (TLR4)·Myeloid Differentiation Factor 2 (MD-2) by Hypoacylated Lipopolysaccharide from a Clinical Isolate of Burkholderia cenocepacia. Di Lorenzo F; Kubik Ł; Oblak A; Lorè NI; Cigana C; Lanzetta R; Parrilli M; Hamad MA; De Soyza A; Silipo A; Jerala R; Bragonzi A; Valvano MA; Martín-Santamaría S; Molinaro A J Biol Chem; 2015 Aug; 290(35):21305-19. PubMed ID: 26160169 [TBL] [Abstract][Full Text] [Related]
4. Tailored Modulation of Cellular Pro-inflammatory Responses With Disaccharide Lipid A Mimetics. Heine H; Adanitsch F; Peternelj TT; Haegman M; Kasper C; Ittig S; Beyaert R; Jerala R; Zamyatina A Front Immunol; 2021; 12():631797. PubMed ID: 33815382 [TBL] [Abstract][Full Text] [Related]
5. The structural basis of lipopolysaccharide recognition by the TLR4-MD-2 complex. Park BS; Song DH; Kim HM; Choi BS; Lee H; Lee JO Nature; 2009 Apr; 458(7242):1191-5. PubMed ID: 19252480 [TBL] [Abstract][Full Text] [Related]
6. Activation of Toll-like receptors by Burkholderia pseudomallei. West TE; Ernst RK; Jansson-Hutson MJ; Skerrett SJ BMC Immunol; 2008 Aug; 9():46. PubMed ID: 18691413 [TBL] [Abstract][Full Text] [Related]
7. Recognition of lipid A variants by the TLR4-MD-2 receptor complex. Maeshima N; Fernandez RC Front Cell Infect Microbiol; 2013; 3():3. PubMed ID: 23408095 [TBL] [Abstract][Full Text] [Related]
8. Lipopolysaccharide Recognition in the Crossroads of TLR4 and Caspase-4/11 Mediated Inflammatory Pathways. Zamyatina A; Heine H Front Immunol; 2020; 11():585146. PubMed ID: 33329561 [TBL] [Abstract][Full Text] [Related]
9. Bordetella pertussis Lipid A Recognition by Toll-like Receptor 4 and MD-2 Is Dependent on Distinct Charged and Uncharged Interfaces. Maeshima N; Evans-Atkinson T; Hajjar AM; Fernandez RC J Biol Chem; 2015 May; 290(21):13440-53. PubMed ID: 25837248 [TBL] [Abstract][Full Text] [Related]
10. Structural insights into pharmacophore-assisted in silico identification of protein-protein interaction inhibitors for inhibition of human toll-like receptor 4 - myeloid differentiation factor-2 (hTLR4-MD-2) complex. Mishra V; Pathak C J Biomol Struct Dyn; 2019 May; 37(8):1968-1991. PubMed ID: 29842849 [TBL] [Abstract][Full Text] [Related]
11. The molecular mechanism of species-specific recognition of lipopolysaccharides by the MD-2/TLR4 receptor complex. Oblak A; Jerala R Mol Immunol; 2015 Feb; 63(2):134-42. PubMed ID: 25037631 [TBL] [Abstract][Full Text] [Related]
12. Human MD-2 discrimination of meningococcal lipid A structures and activation of TLR4. Zimmer SM; Zughaier SM; Tzeng YL; Stephens DS Glycobiology; 2007 Aug; 17(8):847-56. PubMed ID: 17545685 [TBL] [Abstract][Full Text] [Related]
13. Genome-wide expression profiling and mutagenesis studies reveal that lipopolysaccharide responsiveness appears to be absolutely dependent on TLR4 and MD-2 expression and is dependent upon intermolecular ionic interactions. Meng J; Gong M; Björkbacka H; Golenbock DT J Immunol; 2011 Oct; 187(7):3683-93. PubMed ID: 21865549 [TBL] [Abstract][Full Text] [Related]
14. Studies of the TLR4-associated protein MD-2 using yeast-display and mutational analyses. Mattis DM; Chervin AS; Ranoa DR; Kelley SL; Tapping RI; Kranz DM Mol Immunol; 2015 Dec; 68(2 Pt A):203-12. PubMed ID: 26320630 [TBL] [Abstract][Full Text] [Related]
15. MD-2: the Toll 'gatekeeper' in endotoxin signalling. Gangloff M; Gay NJ Trends Biochem Sci; 2004 Jun; 29(6):294-300. PubMed ID: 15276183 [TBL] [Abstract][Full Text] [Related]
16. Myeloid differentiation 2 as a therapeutic target of inflammatory disorders. Park SH; Kim ND; Jung JK; Lee CK; Han SB; Kim Y Pharmacol Ther; 2012 Mar; 133(3):291-8. PubMed ID: 22119168 [TBL] [Abstract][Full Text] [Related]
17. Functional activity of MD-2 polymorphic variant is significantly different in soluble and TLR4-bound forms: decreased endotoxin binding by G56R MD-2 and its rescue by TLR4 ectodomain. Vasl J; Prohinar P; Gioannini TL; Weiss JP; Jerala R J Immunol; 2008 May; 180(9):6107-15. PubMed ID: 18424732 [TBL] [Abstract][Full Text] [Related]
18. A Thermodynamic Funnel Drives Bacterial Lipopolysaccharide Transfer in the TLR4 Pathway. Huber RG; Berglund NA; Kargas V; Marzinek JK; Holdbrook DA; Khalid S; Piggot TJ; Schmidtchen A; Bond PJ Structure; 2018 Aug; 26(8):1151-1161.e4. PubMed ID: 29779787 [TBL] [Abstract][Full Text] [Related]
19. Structural variants of Salmonella Typhimurium lipopolysaccharide induce less dimerization of TLR4/MD-2 and reduced pro-inflammatory cytokine production in human monocytes. Aldapa-Vega G; Moreno-Eutimio MA; Berlanga-Taylor AJ; Jiménez-Uribe AP; Nieto-Velazquez G; López-Ortega O; Mancilla-Herrera I; Cortés-Malagón EM; Gunn JS; Isibasi A; Wong-Baeza I; López-Macías C; Pastelin-Palacios R Mol Immunol; 2019 Jul; 111():43-52. PubMed ID: 30959420 [TBL] [Abstract][Full Text] [Related]
20. Humanized TLR4/MD-2 mice reveal LPS recognition differentially impacts susceptibility to Yersinia pestis and Salmonella enterica. Hajjar AM; Ernst RK; Fortuno ES; Brasfield AS; Yam CS; Newlon LA; Kollmann TR; Miller SI; Wilson CB PLoS Pathog; 2012; 8(10):e1002963. PubMed ID: 23071439 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]