These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

242 related articles for article (PubMed ID: 29099776)

  • 1. Towards the Development of a Low-Cost Device for the Detection of Explosives Vapors by Fluorescence Quenching of Conjugated Polymers in Solid Matrices.
    Martelo LM; das Neves TFP; Figueiredo J; Marques L; Fedorov A; Charas A; Berberan-Santos MN; Burrows HD
    Sensors (Basel); 2017 Nov; 17(11):. PubMed ID: 29099776
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Design and fabrication of optical chemical sensor for detection of nitroaromatic explosives based on fluorescence quenching of phenol red immobilized poly(vinyl alcohol) membrane.
    Zarei AR; Ghazanchayi B
    Talanta; 2016 Apr; 150():162-8. PubMed ID: 26838395
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Truxene-Based Hyperbranched Conjugated Polymers: Fluorescent Micelles Detect Explosives in Water.
    Huang W; Smarsly E; Han J; Bender M; Seehafer K; Wacker I; Schröder RR; Bunz UH
    ACS Appl Mater Interfaces; 2017 Jan; 9(3):3068-3074. PubMed ID: 28051292
    [TBL] [Abstract][Full Text] [Related]  

  • 4. High-speed fluorescence detection of explosives-like vapors.
    Albert KJ; Walt DR
    Anal Chem; 2000 May; 72(9):1947-55. PubMed ID: 10815950
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Fluorescence chemical sensor for determining trace levels of nitroaromatic explosives in water based on conjugated polymer with guanidinium side groups.
    Mi HY; Liu JL; Guan MM; Liu QW; Zhang ZQ; Feng GD
    Talanta; 2018 Sep; 187():314-320. PubMed ID: 29853053
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Highly sensitive detection of nitroaromatic explosives using an electrospun nanofibrous sensor based on a novel fluorescent conjugated polymer.
    Long Y; Chen H; Wang H; Peng Z; Yang Y; Zhang G; Li N; Liu F; Pei J
    Anal Chim Acta; 2012 Sep; 744():82-91. PubMed ID: 22935378
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Organic-Inorganic Hybrid Mesoporous Materials as Regenerable Sensing Systems for the Recognition of Nitroaromatic Explosives.
    Sarkar K; Salinas Y; Campos I; Martínez-Máñez R; Marcos MD; Sancenón F; Amorós P
    Chempluschem; 2013 Jul; 78(7):684-694. PubMed ID: 31986617
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Cellulose nanofibril based graft conjugated polymer films act as a chemosensor for nitroaromatic.
    Niu Q; Gao K; Wu W
    Carbohydr Polym; 2014 Sep; 110():47-52. PubMed ID: 24906727
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Comparing conjugated polymer thin film and electrospun nanofiber sensing elements for detection of explosives.
    Kumar A; Robinson A; Kumar J
    J Nanosci Nanotechnol; 2014 Sep; 14(9):6781-5. PubMed ID: 25924330
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Detection of Explosive Vapors: The Roles of Exciton and Molecular Diffusion in Real-Time Sensing.
    Ali MA; Shoaee S; Fan S; Burn PL; Gentle IR; Meredith P; Shaw PE
    Chemphyschem; 2016 Nov; 17(21):3350-3353. PubMed ID: 27583839
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Visual detection of trace nitroaromatic explosive residue using photoluminescent metallole-containing polymers.
    Toal SJ; Sanchez JC; Dugan RE; Trogler WC
    J Forensic Sci; 2007 Jan; 52(1):79-83. PubMed ID: 17209914
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A facile fabrication of electrodeposited luminescent MOF thin films for selective and recyclable sensing of nitroaromatic explosives.
    Zhang F; Wang Y; Chu T; Wang Z; Li W; Yang Y
    Analyst; 2016 Jul; 141(14):4502-10. PubMed ID: 27158945
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Photophysical Diversity of Water-Soluble Fluorescent Conjugated Polymers Induced by Surfactant Stabilizers for Rapid and Highly Selective Determination of 2,4,6-Trinitrotoluene Traces.
    Alizadeh N; Akbarinejad A; Ghoorchian A
    ACS Appl Mater Interfaces; 2016 Sep; 8(37):24901-8. PubMed ID: 27579479
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A supramolecular Tröger's base derived coordination zinc polymer for fluorescent sensing of phenolic-nitroaromatic explosives in water.
    Shanmugaraju S; Dabadie C; Byrne K; Savyasachi AJ; Umadevi D; Schmitt W; Kitchen JA; Gunnlaugsson T
    Chem Sci; 2017 Feb; 8(2):1535-1546. PubMed ID: 28572910
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Formation of pyrene excimers in mesoporous ormosil thin films for visual detection of nitro-explosives.
    Beyazkilic P; Yildirim A; Bayindir M
    ACS Appl Mater Interfaces; 2014 Apr; 6(7):4997-5004. PubMed ID: 24635728
    [TBL] [Abstract][Full Text] [Related]  

  • 16. An AIE-Active Ultrathin Polymeric Self-Assembled Monolayer Sensor for Trace Volatile Explosive Detection.
    Li M; Xie K; Wang G; Zheng J; Cao Y; Cheng X; Li Z; Wei F; Tu H; Tang J
    Macromol Rapid Commun; 2021 Dec; 42(23):e2100551. PubMed ID: 34610177
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The binding and fluorescence quenching efficiency of nitroaromatic (explosive) vapors in fluorescent carbazole dendrimer thin films.
    Shaw PE; Cavaye H; Chen SS; James M; Gentle IR; Burn PL
    Phys Chem Chem Phys; 2013 Jun; 15(24):9845-53. PubMed ID: 23676991
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Multimodal Fluorescent Polymer Sensor for Highly Sensitive Detection of Nitroaromatics.
    Kumar V; Maiti B; Chini MK; De P; Satapathi S
    Sci Rep; 2019 May; 9(1):7269. PubMed ID: 31086230
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Real-time fluorescence quenching-based detection of nitro-containing explosive vapours: what are the key processes?
    Shaw PE; Burn PL
    Phys Chem Chem Phys; 2017 Nov; 19(44):29714-29730. PubMed ID: 28850131
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Perylene Diimide Based Fluorescent Sensors for Drug Simulant Detection: The Effect of Alkyl-Chain Branching on Film Morphology, Exciton Diffusion, Vapor Diffusion, and Sensing Response.
    Chen M; Chu R; Kistemaker JCM; Burn PL; Gentle IR; Shaw PE
    ACS Appl Mater Interfaces; 2023 Dec; 15(48):56386-56396. PubMed ID: 37982219
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.