These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

173 related articles for article (PubMed ID: 29099780)

  • 1. Maize Cropping Systems Mapping Using RapidEye Observations in Agro-Ecological Landscapes in Kenya.
    Richard K; Abdel-Rahman EM; Subramanian S; Nyasani JO; Thiel M; Jozani H; Borgemeister C; Landmann T
    Sensors (Basel); 2017 Nov; 17(11):. PubMed ID: 29099780
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Evaluating Crop Area Mapping from MODIS Time-Series as an Assessment Tool for Zimbabwe's "Fast Track Land Reform Programme".
    Hentze K; Thonfeld F; Menz G
    PLoS One; 2016; 11(6):e0156630. PubMed ID: 27253327
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The role of harmonized Landsat Sentinel-2 (HLS) products to reveal multiple trajectories and determinants of cropland abandonment in subtropical mountainous areas.
    Hong C; Prishchepov AV; Jin X; Han B; Lin J; Liu J; Ren J; Zhou Y
    J Environ Manage; 2023 Jun; 336():117621. PubMed ID: 36870318
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Understanding yields in alley cropping maize (Zea mays L.) and Cassia siamea Lam. under semi-arid conditions in Machakos, eastern Kenya.
    Mungai DN; Stigter CJ; Coulson CL; Ng'Ang'A JK; Netondo GW; Umaya GO
    J Environ Sci (China); 2001 Jul; 13(3):291-8. PubMed ID: 11590758
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Phenotypic nutrient up-take differences in an alley cropping system in semi-arid Machakos, Kenya.
    Mungai DN; Coulson CL; Stigter CJ; Ng'ang'a JK; Mugendi DN
    J Environ Sci (China); 2001 Apr; 13(2):164-9. PubMed ID: 11590735
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Weed Dynamics during Transition to Conservation Agriculture in Western Kenya Maize Production.
    Odhiambo JA; Norton U; Ashilenje D; Omondi EC; Norton JB
    PLoS One; 2015; 10(8):e0133976. PubMed ID: 26237404
    [TBL] [Abstract][Full Text] [Related]  

  • 7. [Ecological evaluation of different multiple cropping systems in red soil drylands.].
    Cui AH; Zhou LH; Yang BJ; Huang GQ
    Ying Yong Sheng Tai Xue Bao; 2017 Feb; 28(2):456-464. PubMed ID: 29749153
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Environmental abundance of Anopheles (Diptera: Culicidae) larval habitats on land cover change sites in Karima Village, Mwea Rice Scheme, Kenya.
    Jacob BG; Muturi E; Halbig P; Mwangangi J; Wanjogu RK; Mpanga E; Funes J; Shililu J; Githure J; Regens JL; Novak RJ
    Am J Trop Med Hyg; 2007 Jan; 76(1):73-80. PubMed ID: 17255233
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Development of Land-Use/Land-Cover Maps Using Landsat-8 and MODIS Data, and Their Integration for Hydro-Ecological Applications.
    Afrin S; Gupta A; Farjad B; Ahmed MR; Achari G; Hassan Q
    Sensors (Basel); 2019 Nov; 19(22):. PubMed ID: 31717509
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Estimating plant distance in maize using Unmanned Aerial Vehicle (UAV).
    Zhang J; Basso B; Price RF; Putman G; Shuai G
    PLoS One; 2018; 13(4):e0195223. PubMed ID: 29677204
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Land cover mapping based on random forest classification of multitemporal spectral and thermal images.
    Eisavi V; Homayouni S; Yazdi AM; Alimohammadi A
    Environ Monit Assess; 2015 May; 187(5):291. PubMed ID: 25910718
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Shifts in comparative advantages for maize, oat and wheat cropping under climate change in Europe.
    Elsgaard L; Børgesen CD; Olesen JE; Siebert S; Ewert F; Peltonen-Sainio P; Rötter RP; Skjelvåg AO
    Food Addit Contam Part A Chem Anal Control Expo Risk Assess; 2012; 29(10):1514-26. PubMed ID: 22827234
    [TBL] [Abstract][Full Text] [Related]  

  • 13. [Climatic suitability of spring maize planted in the "sickle bend" area of China and regulation suggestion].
    Mao LX; Zhao JF; Xu LL; Yan H; Li S; Li YF
    Ying Yong Sheng Tai Xue Bao; 2016 Dec; 27(12):3935-3943. PubMed ID: 29704353
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Mapping annual 10-m maize cropland changes in China during 2017-2021.
    Li X; Qu Y; Geng H; Xin Q; Huang J; Peng S; Zhang L
    Sci Data; 2023 Nov; 10(1):765. PubMed ID: 37925513
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Using of Multi-Source and Multi-Temporal Remote Sensing Data Improves Crop-Type Mapping in the Subtropical Agriculture Region.
    Sun C; Bian Y; Zhou T; Pan J
    Sensors (Basel); 2019 May; 19(10):. PubMed ID: 31130689
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Agronomic Factors Influencing Fall Armyworm (
    Mutyambai DM; Niassy S; Calatayud PA; Subramanian S
    Insects; 2022 Mar; 13(3):. PubMed ID: 35323564
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Mapping cover crop species in southeastern Michigan using Sentinel-2 satellite data and Google Earth Engine.
    Wang X; Blesh J; Rao P; Paliwal A; Umashaanker M; Jain M
    Front Artif Intell; 2023; 6():1035502. PubMed ID: 37664077
    [TBL] [Abstract][Full Text] [Related]  

  • 18. National-scale cropland mapping based on spectral-temporal features and outdated land cover information.
    Waldner F; Hansen MC; Potapov PV; Löw F; Newby T; Ferreira S; Defourny P
    PLoS One; 2017; 12(8):e0181911. PubMed ID: 28817618
    [TBL] [Abstract][Full Text] [Related]  

  • 19.
    Blasch G; Alemayehu Y; Lesne L; Wolter J; Taymans M; Tesfaye T; Negash T; Andulalem M; Gutu K; Debela M; Eshetu Z; Tesfaye K; Mottaleb K; Defourny P; Hodson DP
    Data Brief; 2024 Jun; 54():110427. PubMed ID: 38690323
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Early-season crop mapping using improved artificial immune network (IAIN) and Sentinel data.
    Hao P; Tang H; Chen Z; Liu Z
    PeerJ; 2018; 6():e5431. PubMed ID: 30186678
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.