BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

253 related articles for article (PubMed ID: 29099805)

  • 1. Glypre: In Silico Prediction of Protein Glycation Sites by Fusing Multiple Features and Support Vector Machine.
    Zhao X; Zhao X; Bao L; Zhang Y; Dai J; Yin M
    Molecules; 2017 Nov; 22(11):. PubMed ID: 29099805
    [TBL] [Abstract][Full Text] [Related]  

  • 2. GlyStruct: glycation prediction using structural properties of amino acid residues.
    Reddy HM; Sharma A; Dehzangi A; Shigemizu D; Chandra AA; Tsunoda T
    BMC Bioinformatics; 2019 Feb; 19(Suppl 13):547. PubMed ID: 30717650
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Gly-PseAAC: Identifying protein lysine glycation through sequences.
    Xu Y; Li L; Ding J; Wu LY; Mai G; Zhou F
    Gene; 2017 Feb; 602():1-7. PubMed ID: 27845204
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Prediction of lysine propionylation sites using biased SVM and incorporating four different sequence features into Chou's PseAAC.
    Ju Z; He JJ
    J Mol Graph Model; 2017 Sep; 76():356-363. PubMed ID: 28763688
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Predict and Analyze Protein Glycation Sites with the mRMR and IFS Methods.
    Liu Y; Gu W; Zhang W; Wang J
    Biomed Res Int; 2015; 2015():561547. PubMed ID: 25961025
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Investigation and identification of protein carbonylation sites based on position-specific amino acid composition and physicochemical features.
    Weng SL; Huang KY; Kaunang FJ; Huang CH; Kao HJ; Chang TH; Wang HY; Lu JJ; Lee TY
    BMC Bioinformatics; 2017 Mar; 18(Suppl 3):66. PubMed ID: 28361707
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Predicting lysine glycation sites using bi-profile bayes feature extraction.
    Ju Z; Sun J; Li Y; Wang L
    Comput Biol Chem; 2017 Dec; 71():98-103. PubMed ID: 29040908
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Prediction of lysine glutarylation sites by maximum relevance minimum redundancy feature selection.
    Ju Z; He JJ
    Anal Biochem; 2018 Jun; 550():1-7. PubMed ID: 29641975
    [TBL] [Abstract][Full Text] [Related]  

  • 9. iDPGK: characterization and identification of lysine phosphoglycerylation sites based on sequence-based features.
    Huang KY; Hung FY; Kao HJ; Lau HH; Weng SL
    BMC Bioinformatics; 2020 Dec; 21(1):568. PubMed ID: 33297954
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Prediction of O-glycosylation sites based on multi-scale composition of amino acids and feature selection.
    Chen Y; Zhou W; Wang H; Yuan Z
    Med Biol Eng Comput; 2015 Jun; 53(6):535-44. PubMed ID: 25752770
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Prediction of lysine crotonylation sites by incorporating the composition of k-spaced amino acid pairs into Chou's general PseAAC.
    Ju Z; He JJ
    J Mol Graph Model; 2017 Oct; 77():200-204. PubMed ID: 28886434
    [TBL] [Abstract][Full Text] [Related]  

  • 12. PredGly: predicting lysine glycation sites for Homo sapiens based on XGboost feature optimization.
    Yu J; Shi S; Zhang F; Chen G; Cao M
    Bioinformatics; 2019 Aug; 35(16):2749-2756. PubMed ID: 30590442
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Prediction of lysine HMGylation sites using multiple feature extraction and fuzzy support vector machine.
    Ju Z; Wang SY
    Anal Biochem; 2023 Feb; 663():115032. PubMed ID: 36592921
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Prediction of protein N-formylation using the composition of k-spaced amino acid pairs.
    Ju Z; Cao JZ
    Anal Biochem; 2017 Oct; 534():40-45. PubMed ID: 28709899
    [TBL] [Abstract][Full Text] [Related]  

  • 15. SVM-SulfoSite: A support vector machine based predictor for sulfenylation sites.
    Al-Barakati HJ; McConnell EW; Hicks LM; Poole LB; Newman RH; Kc DB
    Sci Rep; 2018 Jul; 8(1):11288. PubMed ID: 30050050
    [TBL] [Abstract][Full Text] [Related]  

  • 16. iProtGly-SS: Identifying protein glycation sites using sequence and structure based features.
    Islam MM; Saha S; Rahman MM; Shatabda S; Farid DM; Dehzangi A
    Proteins; 2018 Jul; 86(7):777-789. PubMed ID: 29675975
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Characterization and identification of lysine glutarylation based on intrinsic interdependence between positions in the substrate sites.
    Huang KY; Kao HJ; Hsu JB; Weng SL; Lee TY
    BMC Bioinformatics; 2019 Feb; 19(Suppl 13):384. PubMed ID: 30717647
    [TBL] [Abstract][Full Text] [Related]  

  • 18. PrAS: Prediction of amidation sites using multiple feature extraction.
    Wang T; Zheng W; Wuyun Q; Wu Z; Ruan J; Hu G; Gao J
    Comput Biol Chem; 2017 Feb; 66():57-62. PubMed ID: 27918921
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Computational methods for ubiquitination site prediction using physicochemical properties of protein sequences.
    Cai B; Jiang X
    BMC Bioinformatics; 2016 Mar; 17():116. PubMed ID: 26940649
    [TBL] [Abstract][Full Text] [Related]  

  • 20. iLM-2L: A two-level predictor for identifying protein lysine methylation sites and their methylation degrees by incorporating K-gap amino acid pairs into Chou׳s general PseAAC.
    Ju Z; Cao JZ; Gu H
    J Theor Biol; 2015 Nov; 385():50-7. PubMed ID: 26254214
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.