These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

185 related articles for article (PubMed ID: 29099953)

  • 1. Increased exposure to chilling advances the time to budburst in North American tree species.
    Nanninga C; Buyarski CR; Pretorius AM; Montgomery RA
    Tree Physiol; 2017 Dec; 37(12):1727-1738. PubMed ID: 29099953
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The impact of winter and spring temperatures on temperate tree budburst dates: results from an experimental climate manipulation.
    Fu YH; Campioli M; Deckmyn G; Janssens IA
    PLoS One; 2012; 7(10):e47324. PubMed ID: 23071786
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effectiveness of winter temperatures for satisfying chilling requirements for reproductive budburst of red alder (
    Prevéy JS; Harrington CA
    PeerJ; 2018; 6():e5221. PubMed ID: 30280010
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Temperature alone does not explain phenological variation of diverse temperate plants under experimental warming.
    Marchin RM; Salk CF; Hoffmann WA; Dunn RR
    Glob Chang Biol; 2015 Aug; 21(8):3138-51. PubMed ID: 25736981
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Chilling outweighs photoperiod in preventing precocious spring development.
    Laube J; Sparks TH; Estrella N; Höfler J; Ankerst DP; Menzel A
    Glob Chang Biol; 2014 Jan; 20(1):170-82. PubMed ID: 24323535
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Chilled to be forced: the best dose to wake up buds from winter dormancy.
    Baumgarten F; Zohner CM; Gessler A; Vitasse Y
    New Phytol; 2021 May; 230(4):1366-1377. PubMed ID: 33577087
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Asymmetric effects of cooler and warmer winters on beech phenology last beyond spring.
    Signarbieux C; Toledano E; Sanginés de Carcer P; Fu YH; Schlaepfer R; Buttler A; Vitasse Y
    Glob Chang Biol; 2017 Nov; 23(11):4569-4580. PubMed ID: 28464396
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Late spring freezes coupled with warming winters alter temperate tree phenology and growth.
    Chamberlain CJ; Wolkovich EM
    New Phytol; 2021 Aug; 231(3):987-995. PubMed ID: 33932291
    [TBL] [Abstract][Full Text] [Related]  

  • 9. From observations to experiments in phenology research: investigating climate change impacts on trees and shrubs using dormant twigs.
    Primack RB; Laube J; Gallinat AS; Menzel A
    Ann Bot; 2015 Nov; 116(6):889-97. PubMed ID: 25851135
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Feasting on the ordinary or starving for the exceptional in a warming climate: Phenological synchrony between spongy moth (
    Vitasse Y; Pohl N; Walde MG; Nadel H; Gossner MM; Baumgarten F
    Ecol Evol; 2024 Feb; 14(2):e10928. PubMed ID: 38371870
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Genetic differentiation in the timing of budburst in Fagus crenata in relation to temperature and photoperiod.
    Osada N; Murase K; Tsuji K; Sawada H; Nunokawa K; Tsukahara M; Hiura T
    Int J Biometeorol; 2018 Sep; 62(9):1763-1776. PubMed ID: 29978264
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Insufficient Chilling Effects Vary among Boreal Tree Species and Chilling Duration.
    Man R; Lu P; Dang QL
    Front Plant Sci; 2017; 8():1354. PubMed ID: 28861091
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Shifts in the temperature-sensitive periods for spring phenology in European beech and pedunculate oak clones across latitudes and over recent decades.
    Wenden B; Mariadassou M; Chmielewski FM; Vitasse Y
    Glob Chang Biol; 2020 Mar; 26(3):1808-1819. PubMed ID: 31724292
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Intraspecific differences in spring leaf phenology in relation to tree size in temperate deciduous trees.
    Osada N; Hiura T
    Tree Physiol; 2019 May; 39(5):782-791. PubMed ID: 30806712
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Daylength and thermal time responses of budburst during dormancy release in some northern deciduous trees.
    Heide OM
    Physiol Plant; 1993 Aug; 88(4):531-540. PubMed ID: 28741760
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Will changes in phenology track climate change? A study of growth initiation timing in coast Douglas-fir.
    Ford KR; Harrington CA; Bansal S; Gould PJ; St Clair JB
    Glob Chang Biol; 2016 Nov; 22(11):3712-3723. PubMed ID: 27104650
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Tradeoffs between chilling and forcing in satisfying dormancy requirements for Pacific Northwest tree species.
    Harrington CA; Gould PJ
    Front Plant Sci; 2015; 6():120. PubMed ID: 25784922
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The within-population variability of leaf spring and autumn phenology is influenced by temperature in temperate deciduous trees.
    Denéchère R; Delpierre N; Apostol EN; Berveiller D; Bonne F; Cole E; Delzon S; Dufrêne E; Gressler E; Jean F; Lebourgeois F; Liu G; Louvet JM; Parmentier J; Soudani K; Vincent G
    Int J Biometeorol; 2021 Mar; 65(3):369-379. PubMed ID: 31352524
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Declining global warming effects on the phenology of spring leaf unfolding.
    Fu YH; Zhao H; Piao S; Peaucelle M; Peng S; Zhou G; Ciais P; Huang M; Menzel A; Peñuelas J; Song Y; Vitasse Y; Zeng Z; Janssens IA
    Nature; 2015 Oct; 526(7571):104-7. PubMed ID: 26416746
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Frost hardening and dehardening potential in temperate trees from winter to budburst.
    Vitra A; Lenz A; Vitasse Y
    New Phytol; 2017 Oct; 216(1):113-123. PubMed ID: 28737248
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.