These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

298 related articles for article (PubMed ID: 29100088)

  • 1. Natural Selection on Genes Related to Cardiovascular Health in High-Altitude Adapted Andeans.
    Crawford JE; Amaru R; Song J; Julian CG; Racimo F; Cheng JY; Guo X; Yao J; Ambale-Venkatesh B; Lima JA; Rotter JI; Stehlik J; Moore LG; Prchal JT; Nielsen R
    Am J Hum Genet; 2017 Nov; 101(5):752-767. PubMed ID: 29100088
    [TBL] [Abstract][Full Text] [Related]  

  • 2. "What We Know and What We Do Not Know about Evolutionary Genetic Adaptation to High Altitude Hypoxia in Andean Aymaras".
    Amaru R; Song J; Reading NS; Gordeuk VR; Prchal JT
    Genes (Basel); 2023 Mar; 14(3):. PubMed ID: 36980912
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Identifying signatures of natural selection in Tibetan and Andean populations using dense genome scan data.
    Bigham A; Bauchet M; Pinto D; Mao X; Akey JM; Mei R; Scherer SW; Julian CG; Wilson MJ; López Herráez D; Brutsaert T; Parra EJ; Moore LG; Shriver MD
    PLoS Genet; 2010 Sep; 6(9):e1001116. PubMed ID: 20838600
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Adaptation and mal-adaptation to ambient hypoxia; Andean, Ethiopian and Himalayan patterns.
    Xing G; Qualls C; Huicho L; Rivera-Ch M; Stobdan T; Slessarev M; Prisman E; Ito S; Wu H; Norboo A; Dolma D; Kunzang M; Norboo T; Gamboa JL; Claydon VE; Fisher J; Zenebe G; Gebremedhin A; Hainsworth R; Verma A; Appenzeller O
    PLoS One; 2008 Jun; 3(6):e2342. PubMed ID: 18523639
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Selection scan reveals three new loci related to high altitude adaptation in Native Andeans.
    Jacovas VC; Couto-Silva CM; Nunes K; Lemes RB; de Oliveira MZ; Salzano FM; Bortolini MC; Hünemeier T
    Sci Rep; 2018 Aug; 8(1):12733. PubMed ID: 30143708
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Human Genetic Adaptation to High Altitude: Evidence from the Andes.
    Julian CG; Moore LG
    Genes (Basel); 2019 Feb; 10(2):. PubMed ID: 30781443
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Genetic adaptation to extreme hypoxia: study of high-altitude pulmonary edema in a three-generation Han Chinese family.
    Lorenzo VF; Yang Y; Simonson TS; Nussenzveig R; Jorde LB; Prchal JT; Ge RL
    Blood Cells Mol Dis; 2009; 43(3):221-5. PubMed ID: 19481479
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Global Reach 2018 Heightened α-Adrenergic Signaling Impairs Endothelial Function During Chronic Exposure to Hypobaric Hypoxia.
    Tymko MM; Lawley JS; Ainslie PN; Hansen AB; Hofstaetter F; Rainer S; Amin S; Moralez G; Gasho C; Vizcardo-Galindo G; Bermudez D; Villafuerte FC; Hearon CM
    Circ Res; 2020 Jul; 127(2):e1-e13. PubMed ID: 32268833
    [TBL] [Abstract][Full Text] [Related]  

  • 9. New genetic and physiological factors for excessive erythrocytosis and Chronic Mountain Sickness.
    Villafuerte FC
    J Appl Physiol (1985); 2015 Dec; 119(12):1481-6. PubMed ID: 26272318
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Tibetan and Andean patterns of adaptation to high-altitude hypoxia.
    Beall CM
    Hum Biol; 2000 Feb; 72(1):201-28. PubMed ID: 10721618
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Down-Regulation of EPAS1 Transcription and Genetic Adaptation of Tibetans to High-Altitude Hypoxia.
    Peng Y; Cui C; He Y; Ouzhuluobu ; Zhang H; Yang D; Zhang Q; Bianbazhuoma ; Yang L; He Y; Xiang K; Zhang X; Bhandari S; Shi P; Yangla ; Dejiquzong ; Baimakangzhuo ; Duojizhuoma ; Pan Y; Cirenyangji ; Baimayangji ; Gonggalanzi ; Bai C; Bianba ; Basang ; Ciwangsangbu ; Xu S; Chen H; Liu S; Wu T; Qi X; Su B
    Mol Biol Evol; 2017 Apr; 34(4):818-830. PubMed ID: 28096303
    [TBL] [Abstract][Full Text] [Related]  

  • 12. New Insights into the Genetic Basis of Monge's Disease and Adaptation to High-Altitude.
    Stobdan T; Akbari A; Azad P; Zhou D; Poulsen O; Appenzeller O; Gonzales GF; Telenti A; Wong EHM; Saini S; Kirkness EF; Venter JC; Bafna V; Haddad GG
    Mol Biol Evol; 2017 Dec; 34(12):3154-3168. PubMed ID: 29029226
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Genetic variants at the EGLN1 locus associated with high-altitude adaptation in Tibetans are absent or found at low frequency in highland Andeans.
    Heinrich EC; Wu L; Lawrence ES; Cole AM; Anza-Ramirez C; Villafuerte FC; Simonson TS
    Ann Hum Genet; 2019 May; 83(3):171-176. PubMed ID: 30719713
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Global Reach 2018: reduced flow-mediated dilation stimulated by sustained increases in shear stress in high-altitude excessive erythrocytosis.
    Tremblay JC; Coombs GB; Howe CA; Vizcardo-Galindo GA; Figueroa-Mujíca RJ; Bermudez D; Tymko MM; Villafuerte FC; Ainslie PN; Pyke KE
    Am J Physiol Heart Circ Physiol; 2019 Nov; 317(5):H991-H1001. PubMed ID: 31441692
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Identifying positive selection candidate loci for high-altitude adaptation in Andean populations.
    Bigham AW; Mao X; Mei R; Brutsaert T; Wilson MJ; Julian CG; Parra EJ; Akey JM; Moore LG; Shriver MD
    Hum Genomics; 2009 Dec; 4(2):79-90. PubMed ID: 20038496
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Genetic variation in PTPN1 contributes to metabolic adaptation to high-altitude hypoxia in Tibetan migratory locusts.
    Ding D; Liu G; Hou L; Gui W; Chen B; Kang L
    Nat Commun; 2018 Nov; 9(1):4991. PubMed ID: 30478313
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Global REACH 2018: the adaptive phenotype to life with chronic mountain sickness and polycythaemia.
    Hansen AB; Moralez G; Amin SB; Simspon LL; Hofstaetter F; Anholm JD; Gasho C; Stembridge M; Dawkins TG; Tymko MM; Ainslie PN; Villafuerte F; Romero SA; Hearon CM; Lawley JS
    J Physiol; 2021 Sep; 599(17):4021-4044. PubMed ID: 34245004
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Whole-Genome Sequencing Identifies the Egl Nine Homologue 3 (egln3/phd3) and Protein Phosphatase 1 Regulatory Inhibitor Subunit 2 (PPP1R2P1) Associated with High-Altitude Polycythemia in Tibetans at High Altitude.
    Gesang L; Gusang L; Dawa C; Gesang G; Li K
    Dis Markers; 2019; 2019():5946461. PubMed ID: 31827636
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The Andean adaptive toolkit to counteract high altitude maladaptation: genome-wide and phenotypic analysis of the Collas.
    Eichstaedt CA; Antão T; Pagani L; Cardona A; Kivisild T; Mormina M
    PLoS One; 2014; 9(3):e93314. PubMed ID: 24686296
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Associations of high-altitude polycythemia with polymorphisms in PIK3CD and COL4A3 in Tibetan populations.
    Fan X; Ma L; Zhang Z; Li Y; Hao M; Zhao Z; Zhao Y; Liu F; Liu L; Luo X; Cai P; Li Y; Kang L
    Hum Genomics; 2018 Jul; 12(1):37. PubMed ID: 30053909
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.