BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

190 related articles for article (PubMed ID: 29100114)

  • 1. Wall-based measurement features provides an improved IVUS coronary artery risk assessment when fused with plaque texture-based features during machine learning paradigm.
    Banchhor SK; Londhe ND; Araki T; Saba L; Radeva P; Laird JR; Suri JS
    Comput Biol Med; 2017 Dec; 91():198-212. PubMed ID: 29100114
    [TBL] [Abstract][Full Text] [Related]  

  • 2. PCA-based polling strategy in machine learning framework for coronary artery disease risk assessment in intravascular ultrasound: A link between carotid and coronary grayscale plaque morphology.
    Araki T; Ikeda N; Shukla D; Jain PK; Londhe ND; Shrivastava VK; Banchhor SK; Saba L; Nicolaides A; Shafique S; Laird JR; Suri JS
    Comput Methods Programs Biomed; 2016 May; 128():137-58. PubMed ID: 27040838
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A new method for IVUS-based coronary artery disease risk stratification: A link between coronary & carotid ultrasound plaque burdens.
    Araki T; Ikeda N; Shukla D; Londhe ND; Shrivastava VK; Banchhor SK; Saba L; Nicolaides A; Shafique S; Laird JR; Suri JS
    Comput Methods Programs Biomed; 2016 Feb; 124():161-79. PubMed ID: 26707374
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Stroke Risk Stratification and its Validation using Ultrasonic Echolucent Carotid Wall Plaque Morphology: A Machine Learning Paradigm.
    Araki T; Jain PK; Suri HS; Londhe ND; Ikeda N; El-Baz A; Shrivastava VK; Saba L; Nicolaides A; Shafique S; Laird JR; Gupta A; Suri JS
    Comput Biol Med; 2017 Jan; 80():77-96. PubMed ID: 27915126
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Atherosclerotic risk stratification strategy for carotid arteries using texture-based features.
    Acharya UR; Sree SV; Krishnan MM; Molinari F; Saba L; Ho SY; Ahuja AT; Ho SC; Nicolaides A; Suri JS
    Ultrasound Med Biol; 2012 Jun; 38(6):899-915. PubMed ID: 22502883
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Plaque Tissue Morphology-Based Stroke Risk Stratification Using Carotid Ultrasound: A Polling-Based PCA Learning Paradigm.
    Saba L; Jain PK; Suri HS; Ikeda N; Araki T; Singh BK; Nicolaides A; Shafique S; Gupta A; Laird JR; Suri JS
    J Med Syst; 2017 Jun; 41(6):98. PubMed ID: 28501967
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Data-driven models for the prediction of coronary atherosclerotic plaque progression/regression.
    Bulant CA; Boroni GA; Bass R; Räber L; Lemos PA; García-García HM; Blanco PJ
    Sci Rep; 2024 Jan; 14(1):1493. PubMed ID: 38233429
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Deep learning artificial intelligence framework for multiclass coronary artery disease prediction using combination of conventional risk factors, carotid ultrasound, and intraplaque neovascularization.
    Johri AM; Singh KV; Mantella LE; Saba L; Sharma A; Laird JR; Utkarsh K; Singh IM; Gupta S; Kalra MS; Suri JS
    Comput Biol Med; 2022 Nov; 150():106018. PubMed ID: 36174330
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Assessment of carotid plaque echolucency in addition to plaque size increases the predictive value of carotid ultrasound for coronary events in patients with coronary artery disease and mild carotid atherosclerosis.
    Hirano M; Nakamura T; Kitta Y; Sano K; Kodama Y; Kobayashi T; Fujioka D; Saito Y; Yano T; Watanabe K; Watanabe Y; Kawabata K; Obata JE; Kugiyama K
    Atherosclerosis; 2010 Aug; 211(2):451-5. PubMed ID: 20362290
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Additive Value of Integrated Backscatter IVUS for Detection of Vulnerable Plaque by Optical Frequency Domain Imaging: An Ex Vivo Autopsy Study of Human Coronary Arteries.
    Nakano M; Yahagi K; Yamamoto H; Taniwaki M; Otsuka F; Ladich ER; Joner M; Virmani R
    JACC Cardiovasc Imaging; 2016 Feb; 9(2):163-72. PubMed ID: 26777223
    [TBL] [Abstract][Full Text] [Related]  

  • 11. An integrated method for atherosclerotic carotid plaque segmentation in ultrasound image.
    Qian C; Yang X
    Comput Methods Programs Biomed; 2018 Jan; 153():19-32. PubMed ID: 29157451
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Contralateral artery enlargement predicts carotid plaque progression based on machine learning algorithm models in apoE
    Li B; Jiao Y; Fu C; Xie B; Ma G; Teng G; Yao Y
    Biomed Eng Online; 2016 Dec; 15(Suppl 2):146. PubMed ID: 28155719
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Calcium detection, its quantification, and grayscale morphology-based risk stratification using machine learning in multimodality big data coronary and carotid scans: A review.
    Banchhor SK; Londhe ND; Araki T; Saba L; Radeva P; Khanna NN; Suri JS
    Comput Biol Med; 2018 Oct; 101():184-198. PubMed ID: 30149250
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Using intravascular ultrasound image-based fluid-structure interaction models and machine learning methods to predict human coronary plaque vulnerability change.
    Wang L; Tang D; Maehara A; Wu Z; Yang C; Muccigrosso D; Matsumura M; Zheng J; Bach R; Billiar KL; Stone GW; Mintz GS
    Comput Methods Biomech Biomed Engin; 2020 Nov; 23(15):1267-1276. PubMed ID: 32696674
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Three-dimensional carotid ultrasound plaque texture predicts vascular events.
    van Engelen A; Wannarong T; Parraga G; Niessen WJ; Fenster A; Spence JD; de Bruijne M
    Stroke; 2014 Sep; 45(9):2695-701. PubMed ID: 25034714
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Automated quantification of coronary plaque with computed tomography: comparison with intravascular ultrasound using a dedicated registration algorithm for fusion-based quantification.
    Boogers MJ; Broersen A; van Velzen JE; de Graaf FR; El-Naggar HM; Kitslaar PH; Dijkstra J; Delgado V; Boersma E; de Roos A; Schuijf JD; Schalij MJ; Reiber JH; Bax JJ; Jukema JW
    Eur Heart J; 2012 Apr; 33(8):1007-16. PubMed ID: 22285583
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Accuracy of 64-slice multidetector computed tomography for classification and quantitation of coronary plaque: comparison with integrated backscatter intravascular ultrasound.
    Harada K; Amano T; Uetani T; Funahashi H; Arai K; Okada K; Hirashiki A; Hayashi M; Oshima S; Ishii H; Izawa H; Matsubara T; Murohara T
    Int J Cardiol; 2011 May; 149(1):95-101. PubMed ID: 20442000
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Multiclass machine learning vs. conventional calculators for stroke/CVD risk assessment using carotid plaque predictors with coronary angiography scores as gold standard: a 500 participants study.
    Jamthikar AD; Gupta D; Mantella LE; Saba L; Laird JR; Johri AM; Suri JS
    Int J Cardiovasc Imaging; 2021 Apr; 37(4):1171-1187. PubMed ID: 33184741
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Assessment of carotid plaque neovascularization using quantitative analysis of contrast-enhanced ultrasound imaging is useful for risk stratification in patients with coronary artery disease.
    Nakamura J; Nakamura T; Deyama J; Fujioka D; Kawabata K; Obata JE; Watanabe K; Watanabe Y; Kugiyama K
    Int J Cardiol; 2015 Sep; 195():113-9. PubMed ID: 26025869
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Improved correlation between carotid and coronary atherosclerosis SYNTAX score using automated ultrasound carotid bulb plaque IMT measurement.
    Ikeda N; Gupta A; Dey N; Bose S; Shafique S; Arak T; Godia EC; Saba L; Laird JR; Nicolaides A; Suri JS
    Ultrasound Med Biol; 2015 May; 41(5):1247-62. PubMed ID: 25638311
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.