BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

108 related articles for article (PubMed ID: 29100132)

  • 1. Removal and recovery of Critical Rare Elements from contaminated waters by living Gracilaria gracilis.
    Jacinto J; Henriques B; Duarte AC; Vale C; Pereira E
    J Hazard Mater; 2018 Feb; 344():531-538. PubMed ID: 29100132
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Influence of toxic elements on the simultaneous uptake of rare earth elements from contaminated waters by estuarine macroalgae.
    Costa M; Henriques B; Pinto J; Fabre E; Dias M; Soares J; Carvalho L; Vale C; Pinheiro-Torres J; Pereira E
    Chemosphere; 2020 Aug; 252():126562. PubMed ID: 32224360
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A green method based on living macroalgae for the removal of rare-earth elements from contaminated waters.
    Pinto J; Henriques B; Soares J; Costa M; Dias M; Fabre E; Lopes CB; Vale C; Pinheiro-Torres J; Pereira E
    J Environ Manage; 2020 Jun; 263():110376. PubMed ID: 32174523
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Negligible effect of potentially toxic elements and rare earth elements on mercury removal from contaminated waters by green, brown and red living marine macroalgae.
    Fabre E; Dias M; Costa M; Henriques B; Vale C; Lopes CB; Pinheiro-Torres J; Silva CM; Pereira E
    Sci Total Environ; 2020 Jul; 724():138133. PubMed ID: 32268287
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Trace element seasonality in marine macroalgae of different functional-form groups.
    Malea P; Chatziapostolou A; Kevrekidis T
    Mar Environ Res; 2015 Feb; 103():18-26. PubMed ID: 25460058
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Influence of salinity and rare earth elements on simultaneous removal of Cd, Cr, Cu, Hg, Ni and Pb from contaminated waters by living macroalgae.
    Costa M; Henriques B; Pinto J; Fabre E; Viana T; Ferreira N; Amaral J; Vale C; Pinheiro-Torres J; Pereira E
    Environ Pollut; 2020 Nov; 266(Pt 1):115374. PubMed ID: 32841840
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Sustainable recovery of neodymium and dysprosium from waters through seaweeds: Influence of operational parameters.
    Viana T; Henriques B; Ferreira N; Lopes C; Tavares D; Fabre E; Carvalho L; Pinheiro-Torres J; Pereira E
    Chemosphere; 2021 Oct; 280():130600. PubMed ID: 33940453
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Simultaneous removal of trace elements from contaminated waters by living Ulva lactuca.
    Henriques B; Teixeira A; Figueira P; Reis AT; Almeida J; Vale C; Pereira E
    Sci Total Environ; 2019 Feb; 652():880-888. PubMed ID: 30380494
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Assessment of marine macroalgae potential for gadolinium removal from contaminated aquatic systems.
    Ferreira N; Ferreira A; Viana T; Lopes CB; Costa M; Pinto J; Soares J; Pinheiro-Torres J; Henriques B; Pereira E
    Sci Total Environ; 2020 Dec; 749():141488. PubMed ID: 32829275
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Can the recycling of europium from contaminated waters be achieved through living macroalgae? Study on accumulation and toxicological impacts under realistic concentrations.
    Henriques B; Morais T; Cardoso CED; Freitas R; Viana T; Ferreira N; Fabre E; Pinheiro-Torres J; Pereira E
    Sci Total Environ; 2021 Sep; 786():147176. PubMed ID: 33971602
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A macroalgae-based biotechnology for water remediation: Simultaneous removal of Cd, Pb and Hg by living Ulva lactuca.
    Henriques B; Rocha LS; Lopes CB; Figueira P; Duarte AC; Vale C; Pardal MA; Pereira E
    J Environ Manage; 2017 Apr; 191():275-289. PubMed ID: 28129560
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Response surface approach to optimize the removal of the critical raw material dysprosium from water through living seaweeds.
    Ferreira N; Fabre E; Henriques B; Viana T; Costa M; Pinto J; Tavares D; Carvalho L; Pinheiro-Torres J; Pereira E
    J Environ Manage; 2021 Dec; 300():113697. PubMed ID: 34543961
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Cascade approach of red macroalgae Gracilaria gracilis sustainable valorization by extraction of phycobiliproteins and pyrolysis of residue.
    Francavilla M; Manara P; Kamaterou P; Monteleone M; Zabaniotou A
    Bioresour Technol; 2015 May; 184():305-313. PubMed ID: 25465784
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Eco-friendly methodology for removing and recovering rare earth elements from saline industrial wastewater.
    Viana T; Ferreira N; Tavares DS; Abdolvaseei A; Pereira E; Henriques B
    Environ Sci Pollut Res Int; 2023 Sep; 30(42):96617-96628. PubMed ID: 37578580
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Bioaccumulation processes for mercury removal from saline waters by green, brown and red living marine macroalgae.
    Fabre E; Dias M; Henriques B; Viana T; Ferreira N; Soares J; Pinto J; Vale C; Pinheiro-Torres J; Silva CM; Pereira E
    Environ Sci Pollut Res Int; 2021 Jun; 28(23):30255-30266. PubMed ID: 33586107
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Can contaminated waters or wastewater be alternative sources for technology-critical elements? The case of removal and recovery of lanthanides.
    Afonso EL; Carvalho L; Fateixa S; Amorim CO; Amaral VS; Vale C; Pereira E; Silva CM; Trindade T; Lopes CB
    J Hazard Mater; 2019 Dec; 380():120845. PubMed ID: 31323490
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A simple process for recovery of a stream of products from marine macroalgal biomass.
    Baghel RS; Trivedi N; Reddy CR
    Bioresour Technol; 2016 Mar; 203():160-5. PubMed ID: 26722815
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Rare earth element recycling from waste nickel-metal hydride batteries.
    Yang X; Zhang J; Fang X
    J Hazard Mater; 2014 Aug; 279():384-8. PubMed ID: 25089667
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Application of response surface methodology and box-behnken design for the optimization of mercury removal by Ulva sp.
    Ferreira N; Viana T; Henriques B; Tavares DS; Jacinto J; Colónia J; Pinto J; Pereira E
    J Hazard Mater; 2023 Mar; 445():130405. PubMed ID: 36437192
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Microwave-assisted low-temperature hydrothermal treatment of red seaweed (Gracilaria lemaneiformis) for production of levulinic acid and algae hydrochar.
    Cao L; Yu IKM; Cho DW; Wang D; Tsang DCW; Zhang S; Ding S; Wang L; Ok YS
    Bioresour Technol; 2019 Feb; 273():251-258. PubMed ID: 30448676
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.