These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

311 related articles for article (PubMed ID: 29100165)

  • 1. Density functional theory study of defective silicenes as anode materials for lithium ion batteries.
    Momeni MJ; Chowdhury C; Mousavi-Khoshdel M
    J Mol Graph Model; 2017 Nov; 78():206-212. PubMed ID: 29100165
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Adsorption and diffusion of lithium on layered silicon for Li-ion storage.
    Tritsaris GA; Kaxiras E; Meng S; Wang E
    Nano Lett; 2013 May; 13(5):2258-63. PubMed ID: 23611247
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Adsorption of single Li and the formation of small Li clusters on graphene for the anode of lithium-ion batteries.
    Fan X; Zheng WT; Kuo JL; Singh DJ
    ACS Appl Mater Interfaces; 2013 Aug; 5(16):7793-7. PubMed ID: 23863039
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Energetics and kinetics of li intercalation in irradiated graphene scaffolds.
    Song J; Ouyang B; Medhekar NV
    ACS Appl Mater Interfaces; 2013 Dec; 5(24):12968-74. PubMed ID: 24256350
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Lithium-assisted plastic deformation of silicon electrodes in lithium-ion batteries: a first-principles theoretical study.
    Zhao K; Wang WL; Gregoire J; Pharr M; Suo Z; Vlassak JJ; Kaxiras E
    Nano Lett; 2011 Jul; 11(7):2962-7. PubMed ID: 21692465
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Li segregation induces structure and strength changes at the amorphous Si/Cu interface.
    Stournara ME; Xiao X; Qi Y; Johari P; Lu P; Sheldon BW; Gao H; Shenoy VB
    Nano Lett; 2013 Oct; 13(10):4759-68. PubMed ID: 24000887
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Managing voids of Si anodes in lithium ion batteries.
    Li X; Zhi L
    Nanoscale; 2013 Oct; 5(19):8864-73. PubMed ID: 23942726
    [TBL] [Abstract][Full Text] [Related]  

  • 8. In situ TEM investigation of congruent phase transition and structural evolution of nanostructured silicon/carbon anode for lithium ion batteries.
    Wang CM; Li X; Wang Z; Xu W; Liu J; Gao F; Kovarik L; Zhang JG; Howe J; Burton DJ; Liu Z; Xiao X; Thevuthasan S; Baer DR
    Nano Lett; 2012 Mar; 12(3):1624-32. PubMed ID: 22385150
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Graphene enhances Li storage capacity of porous single-crystalline silicon nanowires.
    Wang XL; Han WQ
    ACS Appl Mater Interfaces; 2010 Dec; 2(12):3709-13. PubMed ID: 21114292
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Graphene encapsulated and SiC reinforced silicon nanowires as an anode material for lithium ion batteries.
    Yang Y; Ren JG; Wang X; Chui YS; Wu QH; Chen X; Zhang W
    Nanoscale; 2013 Sep; 5(18):8689-94. PubMed ID: 23900559
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Si nanoparticle-decorated Si nanowire networks for Li-ion battery anodes.
    Hu L; Wu H; Hong SS; Cui L; McDonough JR; Bohy S; Cui Y
    Chem Commun (Camb); 2011 Jan; 47(1):367-9. PubMed ID: 20830432
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A silicon nanowire-reduced graphene oxide composite as a high-performance lithium ion battery anode material.
    Ren JG; Wang C; Wu QH; Liu X; Yang Y; He L; Zhang W
    Nanoscale; 2014 Mar; 6(6):3353-60. PubMed ID: 24522297
    [TBL] [Abstract][Full Text] [Related]  

  • 13. 25th anniversary article: Understanding the lithiation of silicon and other alloying anodes for lithium-ion batteries.
    McDowell MT; Lee SW; Nix WD; Cui Y
    Adv Mater; 2013 Sep; 25(36):4966-85. PubMed ID: 24038172
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Scalable Preparation of Ternary Hierarchical Silicon Oxide-Nickel-Graphite Composites for Lithium-Ion Batteries.
    Wang J; Bao W; Ma L; Tan G; Su Y; Chen S; Wu F; Lu J; Amine K
    ChemSusChem; 2015 Dec; 8(23):4073-80. PubMed ID: 26548901
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Amorphous silicon-carbon nanospheres synthesized by chemical vapor deposition using cheap methyltrichlorosilane as improved anode materials for Li-ion batteries.
    Zhang Z; Zhang M; Wang Y; Tan Q; Lv X; Zhong Z; Li H; Su F
    Nanoscale; 2013 Jun; 5(12):5384-9. PubMed ID: 23652614
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Facile synthesis of novel Si nanoparticles-graphene composites as high-performance anode materials for Li-ion batteries.
    Zhou M; Pu F; Wang Z; Cai T; Chen H; Zhang H; Guan S
    Phys Chem Chem Phys; 2013 Jul; 15(27):11394-401. PubMed ID: 23740151
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A DFT investigation of lithium adsorption on graphenes as a potential anode material in lithium-ion batteries.
    De Souza LA; Monteiro de Castro G; Marques LF; Belchior JC
    J Mol Graph Model; 2021 Nov; 108():107998. PubMed ID: 34371459
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A Study to Explore the Suitability of LiNi
    Cabello M; Gucciardi E; Liendo G; Caizán-Juananera L; Carriazo D; Villaverde A
    Int J Mol Sci; 2021 Sep; 22(19):. PubMed ID: 34638671
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Growth of linked silicon/carbon nanospheres on copper substrate as integrated electrodes for Li-ion batteries.
    Zhang Z; Wang Y; Tan Q; Li D; Chen Y; Zhong Z; Su F
    Nanoscale; 2014 Jan; 6(1):371-7. PubMed ID: 24201898
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Controlling diffusion of lithium in silicon nanostructures.
    Chan TL; Chelikowsky JR
    Nano Lett; 2010 Mar; 10(3):821-5. PubMed ID: 20121259
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.