These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

112 related articles for article (PubMed ID: 29100267)

  • 41. Expanded natural product diversity revealed by analysis of lanthipeptide-like gene clusters in actinobacteria.
    Zhang Q; Doroghazi JR; Zhao X; Walker MC; van der Donk WA
    Appl Environ Microbiol; 2015 Jul; 81(13):4339-50. PubMed ID: 25888176
    [TBL] [Abstract][Full Text] [Related]  

  • 42. EzCatDB: the Enzyme Catalytic-mechanism Database.
    Nagano N
    Nucleic Acids Res; 2005 Jan; 33(Database issue):D407-12. PubMed ID: 15608227
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Protein-reactive natural products.
    Drahl C; Cravatt BF; Sorensen EJ
    Angew Chem Int Ed Engl; 2005 Sep; 44(36):5788-809. PubMed ID: 16149114
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Structural biology in plant natural product biosynthesis--architecture of enzymes from monoterpenoid indole and tropane alkaloid biosynthesis.
    Stöckigt J; Panjikar S
    Nat Prod Rep; 2007 Dec; 24(6):1382-400. PubMed ID: 18033585
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Structural elements of an NRPS cyclization domain and its intermodule docking domain.
    Dowling DP; Kung Y; Croft AK; Taghizadeh K; Kelly WL; Walsh CT; Drennan CL
    Proc Natl Acad Sci U S A; 2016 Nov; 113(44):12432-12437. PubMed ID: 27791103
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Metagenomic approaches for exploiting uncultivated bacteria as a resource for novel biosynthetic enzymology.
    Wilson MC; Piel J
    Chem Biol; 2013 May; 20(5):636-47. PubMed ID: 23706630
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Looking at enzymes from the inside out: the proximity of catalytic residues to the molecular centroid can be used for detection of active sites and enzyme-ligand interfaces.
    Ben-Shimon A; Eisenstein M
    J Mol Biol; 2005 Aug; 351(2):309-26. PubMed ID: 16019028
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Protein engineering of microbial enzymes.
    Böttcher D; Bornscheuer UT
    Curr Opin Microbiol; 2010 Jun; 13(3):274-82. PubMed ID: 20171138
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Substrate-Controlled Stereochemistry in Natural Product Biosynthesis.
    Ding W; Li Y; Zhang Q
    ACS Chem Biol; 2015 Jul; 10(7):1590-8. PubMed ID: 25844528
    [TBL] [Abstract][Full Text] [Related]  

  • 50. CAZymes Analysis Toolkit (CAT): web service for searching and analyzing carbohydrate-active enzymes in a newly sequenced organism using CAZy database.
    Park BH; Karpinets TV; Syed MH; Leuze MR; Uberbacher EC
    Glycobiology; 2010 Dec; 20(12):1574-84. PubMed ID: 20696711
    [TBL] [Abstract][Full Text] [Related]  

  • 51. The importance of asking "how and why?" in natural product structure elucidation.
    Brown PD; Lawrence AL
    Nat Prod Rep; 2017 Oct; 34(10):1193-1202. PubMed ID: 28850146
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Rational proteomics II: electrostatic nature of cofactor preference in the short-chain oxidoreductase (SCOR) enzyme family.
    Pletnev VZ; Weeks CM; Duax WL
    Proteins; 2004 Nov; 57(2):294-301. PubMed ID: 15340916
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Bioactivity-guided navigation of chemical space.
    Bon RS; Waldmann H
    Acc Chem Res; 2010 Aug; 43(8):1103-14. PubMed ID: 20481515
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Using a library of structural templates to recognise catalytic sites and explore their evolution in homologous families.
    Torrance JW; Bartlett GJ; Porter CT; Thornton JM
    J Mol Biol; 2005 Apr; 347(3):565-81. PubMed ID: 15755451
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Enzymatic tools for engineering natural product glycosylation.
    Blanchard S; Thorson JS
    Curr Opin Chem Biol; 2006 Jun; 10(3):263-71. PubMed ID: 16675288
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Protein ligand-binding site comparison by a reduced vector representation derived from multidimensional scaling of generalized description of binding sites.
    Nakamura T; Tomii K
    Methods; 2016 Jan; 93():35-40. PubMed ID: 26276315
    [TBL] [Abstract][Full Text] [Related]  

  • 57. On the structural basis of the catalytic mechanism and the regulation of the alpha subunit of tryptophan synthase from Salmonella typhimurium and BX1 from maize, two evolutionarily related enzymes.
    Kulik V; Hartmann E; Weyand M; Frey M; Gierl A; Niks D; Dunn MF; Schlichting I
    J Mol Biol; 2005 Sep; 352(3):608-20. PubMed ID: 16120446
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Enzyme evolution in natural products biosynthesis: target- or diversity-oriented?
    Noda-Garcia L; Tawfik DS
    Curr Opin Chem Biol; 2020 Dec; 59():147-154. PubMed ID: 32771972
    [TBL] [Abstract][Full Text] [Related]  

  • 59. [Recent advances and prospect on structural biology of beta-mannanase--a review].
    Zhao Y; Xue Y; Ma Y
    Wei Sheng Wu Xue Bao; 2009 Sep; 49(9):1131-7. PubMed ID: 20030048
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Elucidation of Biosynthetic Pathways of Natural Products.
    Kishimoto S; Tsunematsu Y; Sato M; Watanabe K
    Chem Rec; 2017 Nov; 17(11):1095-1108. PubMed ID: 28387469
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.