These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

352 related articles for article (PubMed ID: 29100687)

  • 21. Changing climate and overgrazing are decimating Mongolian steppes.
    Liu YY; Evans JP; McCabe MF; de Jeu RA; van Dijk AI; Dolman AJ; Saizen I
    PLoS One; 2013; 8(2):e57599. PubMed ID: 23451249
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Grazing exclusion by fencing non-linearly restored the degraded alpine grasslands on the Tibetan Plateau.
    Wu J; Feng Y; Zhang X; Wurst S; Tietjen B; Tarolli P; Song C
    Sci Rep; 2017 Nov; 7(1):15202. PubMed ID: 29123187
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Ecosystem carbon stocks and their changes in China's grasslands.
    Fang J; Yang Y; Ma W; Mohammat A; Shen H
    Sci China Life Sci; 2010 Jul; 53(7):757-65. PubMed ID: 20697865
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Phenology-Based Residual Trend Analysis of MODIS-NDVI Time Series for Assessing Human-Induced Land Degradation.
    Chen H; Liu X; Ding C; Huang F
    Sensors (Basel); 2018 Oct; 18(11):. PubMed ID: 30380671
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Differentiating climate- and human-induced drivers of grassland degradation in the Liao River Basin, China.
    He C; Tian J; Gao B; Zhao Y
    Environ Monit Assess; 2015 Jan; 187(1):4199. PubMed ID: 25512244
    [TBL] [Abstract][Full Text] [Related]  

  • 26. The response of vegetation dynamics of the different alpine grassland types to temperature and precipitation on the Tibetan Plateau.
    Sun J; Qin X; Yang J
    Environ Monit Assess; 2016 Jan; 188(1):20. PubMed ID: 26661956
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Herbivory and Competition of Tibetan Steppe Vegetation in Winter Pasture: Effects of Livestock Exclosure and Plateau Pika Reduction.
    Harris RB; Wenying W; Badinqiuying ; Smith AT; Bedunah DJ
    PLoS One; 2015; 10(7):e0132897. PubMed ID: 26208005
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Satellite-based studies on large-scale vegetation changes in China.
    Zhao X; Zhou D; Fang J
    J Integr Plant Biol; 2012 Oct; 54(10):713-28. PubMed ID: 22974506
    [TBL] [Abstract][Full Text] [Related]  

  • 29. High potential of stable carbon sequestration in phytoliths of China's grasslands.
    Song Z; Wu Y; Yang Y; Zhang X; Van Zwieten L; Bolan N; Li Z; Liu H; Hao Q; Yu C; Sun X; Song A; Wang W; Liu C; Wang H
    Glob Chang Biol; 2022 Apr; 28(8):2736-2750. PubMed ID: 35060227
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Impacts of climate change and human activities on different degraded grassland based on NDVI.
    Hou Q; Ji Z; Yang H; Yu X
    Sci Rep; 2022 Sep; 12(1):15918. PubMed ID: 36151254
    [TBL] [Abstract][Full Text] [Related]  

  • 31. [Effects of climate and grazing on the vegetation cover change in Xilinguole League of Inner Mongolia, North China].
    Wang HM; Li ZH; Wang Z
    Ying Yong Sheng Tai Xue Bao; 2013 Jan; 24(1):156-60. PubMed ID: 23718004
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Grazing influences biomass production and protein content of alpine meadows.
    Jarque-Bascuñana L; Calleja JA; Ibañez M; Bartolomé J; Albanell E; Espunyes J; Gálvez-Cerón A; López-Martín JM; Villamuelas M; Gassó D; Fernández-Aguilar X; Colom-Cadena A; Krumins JA; Serrano E
    Sci Total Environ; 2022 Apr; 818():151771. PubMed ID: 34808181
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Biomass carbon stocks and their changes in northern China's grasslands during 1982-2006.
    Ma W; Fang J; Yang Y; Mohammat A
    Sci China Life Sci; 2010 Jul; 53(7):841-50. PubMed ID: 20697873
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Multiscale Trend Analysis for Pampa Grasslands Using Ground Data and Vegetation Sensor Imagery.
    Scottá FC; da Fonseca EL
    Sensors (Basel); 2015 Jul; 15(7):17666-92. PubMed ID: 26197320
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Comparison of aboveground vegetation and soil seed bank composition at sites of different grazing intensity around a savanna-woodland watering point in West Africa.
    Sanou L; Zida D; Savadogo P; Thiombiano A
    J Plant Res; 2018 Sep; 131(5):773-788. PubMed ID: 29948487
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Temperature sensitivities of vegetation indices and aboveground biomass are primarily linked with warming magnitude in high-cold grasslands.
    Fu G; Sun W
    Sci Total Environ; 2022 Oct; 843():157002. PubMed ID: 35772540
    [TBL] [Abstract][Full Text] [Related]  

  • 37. An evaluation model for aboveground biomass based on hyperspectral data from field and TM8 in Khorchin grassland, China.
    Zhang X; Chen X; Tian M; Fan Y; Ma J; Xing D
    PLoS One; 2020; 15(2):e0223934. PubMed ID: 32109248
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Livestock grazing supports native plants and songbirds in a California annual grassland.
    Gennet S; Spotswood E; Hammond M; Bartolome JW
    PLoS One; 2017; 12(6):e0176367. PubMed ID: 28614358
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Quantifying the contributions of climate change and human activities to vegetation dynamic in China based on multiple indices.
    Liu Y; Liu H; Chen Y; Gang C; Shen Y
    Sci Total Environ; 2022 Sep; 838(Pt 4):156553. PubMed ID: 35690202
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Dynamics of Soil Organic Carbon and Aggregate Stability with Grazing Exclusion in the Inner Mongolian Grasslands.
    Wen D; He N; Zhang J
    PLoS One; 2016; 11(1):e0146757. PubMed ID: 26751370
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 18.