BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

122 related articles for article (PubMed ID: 29100701)

  • 1. Robustness of patient positioning for interfractional error in carbon ion radiotherapy for stage I lung cancer: Bone matching versus tumor matching.
    Sakai M; Kubota Y; Saitoh JI; Irie D; Shirai K; Okada R; Torikoshi M; Ohno T; Nakano T
    Radiother Oncol; 2018 Oct; 129(1):95-100. PubMed ID: 29100701
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Technical Note: Predicting dose distribution with replacing stopping power ratio for inter-fractional motion and intra-fractional motion during carbon ion radiotherapy with passive irradiation method for stage I lung cancer.
    Kubota Y; Sakai M; Tashiro M; Saitoh JI; Abe T; Ohno T; Nakano T
    Med Phys; 2018 Jul; 45(7):3435-3441. PubMed ID: 29757472
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Verification of Dose Distribution in Carbon Ion Radiation Therapy for Stage I Lung Cancer.
    Irie D; Saitoh JI; Shirai K; Abe T; Kubota Y; Sakai M; Noda SE; Ohno T; Nakano T
    Int J Radiat Oncol Biol Phys; 2016 Dec; 96(5):1117-1123. PubMed ID: 27869084
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Comparison between bone matching and marker matching for evaluation of intra- and inter-fractional changes in accumulated dose of carbon ion radiotherapy for hepatocellular carcinoma.
    Kubota Y; Katoh H; Shibuya K; Shiba S; Abe S; Sakai M; Yuasa D; Tsuda K; Ohno T; Nakano T
    Radiother Oncol; 2019 Aug; 137():77-82. PubMed ID: 31078014
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Dose assessment for patients with stage I non-small cell lung cancer receiving passive scattering carbon-ion radiotherapy using daily computed tomographic images: A prospective study.
    Li Y; Kubota Y; Kubo N; Mizukami T; Sakai M; Kawamura H; Irie D; Okano N; Tsuda K; Matsumura A; Saitoh JI; Nakano T; Ohno T
    Radiother Oncol; 2020 Mar; 144():224-230. PubMed ID: 32044421
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Potential Pitfalls of a Fiducial Marker-matching Technique in Carbon-ion Radiotherapy for Lung Cancer.
    Shiba S; Saitoh JI; Irie D; Shirai K; Abe T; Kubota Y; Sakai M; Okada R; Ohno T; Nakano T
    Anticancer Res; 2017 Oct; 37(10):5673-5680. PubMed ID: 28982885
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Positioning accuracy and daily dose assessment for prostate cancer treatment using in-room CT image guidance at a proton therapy facility.
    Maeda Y; Sato Y; Minami H; Yasukawa Y; Yamamoto K; Tamamura H; Shibata S; Bou S; Sasaki M; Tameshige Y; Kume K; Ooto H; Kasahara S; Shimizu Y; Saga Y; Omoya A; Saitou M
    Med Phys; 2018 May; 45(5):1832-1843. PubMed ID: 29532489
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Robustness of daily dose for each beam angle and accumulated dose for inter-fractional anatomical changes in passive carbon-ion radiotherapy for pancreatic cancer: Bone matching versus tumor matching.
    Kubota Y; Okamoto M; Shiba S; Okazaki S; Matsui T; Li Y; Itabashi Y; Sakai M; Kubo N; Tsuda K; Ohno T; Nakano T
    Radiother Oncol; 2021 Apr; 157():85-92. PubMed ID: 33515667
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Fiducial marker matching versus vertebral body matching: Dosimetric impact of patient positioning in carbon ion radiotherapy for primary hepatic cancer.
    Abe S; Kubota Y; Shibuya K; Koyama Y; Abe T; Ohno T; Nakano T
    Phys Med; 2017 Jan; 33():114-120. PubMed ID: 28057427
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Robustness of 4D-optimized scanned carbon ion beam therapy against interfractional changes in lung cancer.
    Graeff C
    Radiother Oncol; 2017 Mar; 122(3):387-392. PubMed ID: 28073579
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Interfractional robustness of scanning carbon ion radiotherapy for prostate cancer: An analysis based on dose distribution from daily in-room CT images.
    Tsuchida K; Minohara S; Kusano Y; Kano K; Anno W; Takakusagi Y; Mizoguchi N; Serizawa I; Yoshida D; Imura K; Takayama Y; Kamada T; Katoh H; Ohno T
    J Appl Clin Med Phys; 2021 Jun; 22(6):130-138. PubMed ID: 34046997
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Adaptive planning based on single beam optimization in passive scattering carbon ion radiotherapy for patients with pancreatic cancer.
    Li Y; Kubota Y; Okamoto M; Shiba S; Okazaki S; Matsui T; Tashiro M; Nakano T; Ohno T
    Radiat Oncol; 2021 Jun; 16(1):111. PubMed ID: 34147099
    [TBL] [Abstract][Full Text] [Related]  

  • 13. High-dose hypofractionated pencil beam scanning carbon ion radiotherapy for lung tumors: Dosimetric impact of different spot sizes and robustness to interfractional uncertainties.
    Mastella E; Mirandola A; Russo S; Vai A; Magro G; Molinelli S; Barcellini A; Vitolo V; Orlandi E; Ciocca M
    Phys Med; 2021 May; 85():79-86. PubMed ID: 33984821
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effect of patient positioning on carbon-ion therapy planned dose distribution to pancreatic tumors and organs at risk.
    Miki K; Fukahori M; Kumagai M; Yamada S; Mori S
    Phys Med; 2017 Jan; 33():38-46. PubMed ID: 28003135
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Evaluation of the accuracy and clinical practicality of a calculation system for patient positional displacement in carbon ion radiotherapy at five sites.
    Kubota Y; Hayashi H; Abe S; Souda S; Okada R; Ishii T; Tashiro M; Torikoshi M; Kanai T; Ohno T; Nakano T
    J Appl Clin Med Phys; 2018 Mar; 19(2):144-153. PubMed ID: 29369463
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Potential Pitfalls of Diaphragm Structural Matching in Carbon-ion Radiotherapy for Pancreatic Cancer.
    Itabashi Y; Kubota Y; Okamoto M; Tsuda K; Shiba S; Hoshino Y; Suto T; Ohno T; Nakano T
    Anticancer Res; 2019 Aug; 39(8):4351-4356. PubMed ID: 31366529
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Comparison of photon volumetric modulated arc therapy, intensity-modulated proton therapy, and intensity-modulated carbon ion therapy for delivery of hypo-fractionated thoracic radiotherapy.
    Chi A; Lin LC; Wen S; Yan H; Hsi WC
    Radiat Oncol; 2017 Aug; 12(1):132. PubMed ID: 28810881
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Feasibility of dynamic adaptive passive scattering proton therapy with computed tomography image guidance in the lung.
    Moriya S; Tachibana H; Hotta K; Nakamura N; Sakae T; Akimoto T
    Med Phys; 2017 Sep; 44(9):4474-4481. PubMed ID: 28665491
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Dosimetric comparison of carbon ion and X-ray radiotherapy for Stage IIIA non-small cell lung cancer.
    Kubo N; Saitoh JI; Shimada H; Shirai K; Kawamura H; Ohno T; Nakano T
    J Radiat Res; 2016 Sep; 57(5):548-554. PubMed ID: 27242341
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effects of beam interruption time on tumor control probability in single-fractionated carbon-ion radiotherapy for non-small cell lung cancer.
    Inaniwa T; Kanematsu N; Suzuki M; Hawkins RB
    Phys Med Biol; 2015 May; 60(10):4105-21. PubMed ID: 25933161
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.