These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

161 related articles for article (PubMed ID: 29100924)

  • 1. A practical method to calculate the R1 index of waste-to-energy facilities.
    Viganò F
    Waste Manag; 2018 Mar; 73():287-300. PubMed ID: 29100924
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Evaluation of the environmental sustainability of different waste-to-energy plant configurations.
    Lombardi L; Carnevale EA
    Waste Manag; 2018 Mar; 73():232-246. PubMed ID: 28728789
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Technical assessment of the CLEERGAS moving grate-based process for energy generation from municipal solid waste.
    Lusardi MR; Kohn M; Themelis NJ; Castaldi MJ
    Waste Manag Res; 2014 Aug; 32(8):772-81. PubMed ID: 25096323
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Environmental evaluation of the electric and cogenerative configurations for the energy recovery of the Turin municipal solid waste incineration plant.
    Panepinto D; Genon G
    Waste Manag Res; 2014 Jul; 32(7):670-80. PubMed ID: 24942837
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Energy, environmental and operation aspects of a SRF-fired fluidized bed waste-to-energy plant.
    De Gisi S; Chiarelli A; Tagliente L; Notarnicola M
    Waste Manag; 2018 Mar; 73():271-286. PubMed ID: 28483367
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effect of recycling activities on the heating value of solid waste: case study of the Greater Vancouver Regional District (Metro Vancouver).
    Abedini AR; Atwater JW; Fu GY
    Waste Manag Res; 2012 Aug; 30(8):839-48. PubMed ID: 22700857
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The status of waste management and waste to energy for district heating in South Korea.
    Thanos Bourtsalas AC; Seo Y; Tanvir Alam M; Seo YC
    Waste Manag; 2019 Feb; 85():304-316. PubMed ID: 30803585
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Assessing the environmental sustainability of energy recovery from municipal solid waste in the UK.
    Jeswani HK; Azapagic A
    Waste Manag; 2016 Apr; 50():346-63. PubMed ID: 26906085
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Efficiency of energy recovery from waste incineration, in the light of the new Waste Framework Directive.
    Grosso M; Motta A; Rigamonti L
    Waste Manag; 2010 Jul; 30(7):1238-43. PubMed ID: 20347289
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Life cycle assessment modelling of waste-to-energy incineration in Spain and Portugal.
    Margallo M; Aldaco R; Irabien A; Carrillo V; Fischer M; Bala A; Fullana P
    Waste Manag Res; 2014 Jun; 32(6):492-9. PubMed ID: 24951550
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Assessment of mobility and bioavailability of contaminants in MSW incineration ash with aquatic and terrestrial bioassays.
    Ribé V; Nehrenheim E; Odlare M
    Waste Manag; 2014 Oct; 34(10):1871-6. PubMed ID: 24502934
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Municipal solid waste incineration plant: A multi-step approach to the evaluation of an energy-recovery configuration.
    Panepinto D; Zanetti MC
    Waste Manag; 2018 Mar; 73():332-341. PubMed ID: 28774585
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Economic and environmental review of Waste-to-Energy systems for municipal solid waste management in medium and small municipalities.
    Fernández-González JM; Grindlay AL; Serrano-Bernardo F; Rodríguez-Rojas MI; Zamorano M
    Waste Manag; 2017 Sep; 67():360-374. PubMed ID: 28501263
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Attitudes toward waste to energy facilities and impacts on diversion in Ontario, Canada.
    Baxter J; Ho Y; Rollins Y; Maclaren V
    Waste Manag; 2016 Apr; 50():75-85. PubMed ID: 26951720
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Processing and properties of a solid energy fuel from municipal solid waste (MSW) and recycled plastics.
    Gug J; Cacciola D; Sobkowicz MJ
    Waste Manag; 2015 Jan; 35():283-92. PubMed ID: 25453320
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A review of technologies and performances of thermal treatment systems for energy recovery from waste.
    Lombardi L; Carnevale E; Corti A
    Waste Manag; 2015 Mar; 37():26-44. PubMed ID: 25535103
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Integrated assessment of a new Waste-to-Energy facility in Central Greece in the context of regional perspectives.
    Perkoulidis G; Papageorgiou A; Karagiannidis A; Kalogirou S
    Waste Manag; 2010 Jul; 30(7):1395-406. PubMed ID: 20061131
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Implementation of waste-to-energy options in landfill-dominated countries: Economic evaluation and GHG impact.
    Aracil C; Haro P; Fuentes-Cano D; Gómez-Barea A
    Waste Manag; 2018 Jun; 76():443-456. PubMed ID: 29610061
    [TBL] [Abstract][Full Text] [Related]  

  • 19. [Thermovalorization: new technologies, impacts and mitigation strategies].
    Buffoli M; Capolongo S; Loconte VL; Signorelli C
    Ann Ig; 2012; 24(2):167-78. PubMed ID: 22755503
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Feasibility analysis of municipal solid waste mass burning in the Region of East Macedonia--Thrace in Greece.
    Athanasiou CJ; Tsalkidis DA; Kalogirou E; Voudrias EA
    Waste Manag Res; 2015 Jun; 33(6):561-9. PubMed ID: 26060234
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.