These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
23. Trypanosomatids Are Much More than Just Trypanosomes: Clues from the Expanded Family Tree. Lukeš J; Butenko A; Hashimi H; Maslov DA; Votýpka J; Yurchenko V Trends Parasitol; 2018 Jun; 34(6):466-480. PubMed ID: 29605546 [TBL] [Abstract][Full Text] [Related]
24. A novel ecto-phosphatase activity of Herpetomonas muscarum muscarum inhibited by platelet-activating factor. Dutra PM; Rodrigues CO; Jesus JB; Lopes AH; Souto-Padrón T; Meyer-Fernandes JR Biochem Biophys Res Commun; 1998 Dec; 253(1):164-9. PubMed ID: 9875238 [TBL] [Abstract][Full Text] [Related]
25. Influence of leishmanolysin-like molecules of Herpetomonas samuelpessoai on the interaction with macrophages. Pereira FM; Santos-Mallet JR; Branquinha MH; d'Avila-Levy CM; Santos AL Microbes Infect; 2010 Nov; 12(12-13):1061-70. PubMed ID: 20670690 [TBL] [Abstract][Full Text] [Related]
26. Development of Monoxenous Trypanosomatids and Phytomonads in Insects. Frolov AO; Kostygov AY; Yurchenko V Trends Parasitol; 2021 Jun; 37(6):538-551. PubMed ID: 33714646 [TBL] [Abstract][Full Text] [Related]
27. Interactions of antimicrobial peptides with Leishmania and trypanosomes and their functional role in host parasitism. McGwire BS; Kulkarni MM Exp Parasitol; 2010 Nov; 126(3):397-405. PubMed ID: 20159013 [TBL] [Abstract][Full Text] [Related]
28. Unique Aspects of rRNA Biogenesis in Trypanosomatids. Rajan KS; Chikne V; Decker K; Waldman Ben-Asher H; Michaeli S Trends Parasitol; 2019 Oct; 35(10):778-794. PubMed ID: 31473096 [TBL] [Abstract][Full Text] [Related]
29. Peptidases and gp63-like proteins in Herpetomonas megaseliae: possible involvement in the adhesion to the invertebrate host. Nogueira de Melo AC; d'Avila-Levy CM; Dias FA; Armada JL; Silva HD; Lopes AH; Santos AL; Branquinha MH; Vermelho AB Int J Parasitol; 2006 Apr; 36(4):415-22. PubMed ID: 16500661 [TBL] [Abstract][Full Text] [Related]
30. The process of lipid storage in insect oocytes: The involvement of β-chain of ATP synthase in lipophorin-mediated lipid transfer in the chagas' disease vector Panstrongylus megistus (Hemiptera: Reduviidae). Fruttero LL; Leyria J; Ramos FO; Stariolo R; Settembrini BP; Canavoso LE J Insect Physiol; 2017 Jan; 96():82-92. PubMed ID: 27983943 [TBL] [Abstract][Full Text] [Related]
31. Infection Dynamics and Immune Response in a Newly Described Drosophila-Trypanosomatid Association. Hamilton PT; Votýpka J; Dostálová A; Yurchenko V; Bird NH; Lukeš J; Lemaitre B; Perlman SJ mBio; 2015 Sep; 6(5):e01356-15. PubMed ID: 26374124 [TBL] [Abstract][Full Text] [Related]
32. The trypanothione system and its implications in the therapy of trypanosomatid diseases. Flohé L Int J Med Microbiol; 2012 Oct; 302(4-5):216-20. PubMed ID: 22889611 [TBL] [Abstract][Full Text] [Related]
33. Viral discovery and diversity in trypanosomatid protozoa with a focus on relatives of the human parasite Grybchuk D; Akopyants NS; Kostygov AY; Konovalovas A; Lye LF; Dobson DE; Zangger H; Fasel N; Butenko A; Frolov AO; Votýpka J; d'Avila-Levy CM; Kulich P; Moravcová J; Plevka P; Rogozin IB; Serva S; Lukeš J; Beverley SM; Yurchenko V Proc Natl Acad Sci U S A; 2018 Jan; 115(3):E506-E515. PubMed ID: 29284754 [TBL] [Abstract][Full Text] [Related]
34. Insect cell nutrition: emphasis on sterols and fatty acids. Vaughn JL In Vitro; 1973; 9(2):122-8. PubMed ID: 4586533 [No Abstract] [Full Text] [Related]
35. Echinococcus granulosus antigen B: a Hydrophobic Ligand Binding Protein at the host-parasite interface. Silva-Álvarez V; Folle AM; Ramos AL; Zamarreño F; Costabel MD; García-Zepeda E; Salinas G; Córsico B; Ferreira AM Prostaglandins Leukot Essent Fatty Acids; 2015 Feb; 93():17-23. PubMed ID: 25451555 [TBL] [Abstract][Full Text] [Related]
36. Hydrogen peroxide resistance in Strigomonas culicis: Effects on mitochondrial functionality and Aedes aegypti interaction. Bombaça ACS; Dias FA; Ennes-Vidal V; Garcia-Gomes ADS; Sorgine MHF; d'Avila-Levy CM; Menna-Barreto RFS Free Radic Biol Med; 2017 Dec; 113():255-266. PubMed ID: 28993269 [TBL] [Abstract][Full Text] [Related]
37. Colonization of Aedes aegypti midgut by the endosymbiont-bearing trypanosomatid Blastocrithidia culicis. Corrêa-da-Silva MS; Fampa P; Lessa LP; Silva Edos R; dos Santos Mallet JR; Saraiva EM; Motta MC Parasitol Res; 2006 Sep; 99(4):384-91. PubMed ID: 16572337 [TBL] [Abstract][Full Text] [Related]
38. Lineage-specific activities of a multipotent mitochondrion of trypanosomatid flagellates. Škodová-Sveráková I; Verner Z; Skalický T; Votýpka J; Horváth A; Lukeš J Mol Microbiol; 2015 Apr; 96(1):55-67. PubMed ID: 25557487 [TBL] [Abstract][Full Text] [Related]
39. Host-lipidome as a potential target of protozoan parasites. Rub A; Arish M; Husain SA; Ahmed N; Akhter Y Microbes Infect; 2013; 15(10-11):649-60. PubMed ID: 23811020 [TBL] [Abstract][Full Text] [Related]
40. Transovum transmission of trypanosomatid cysts in the Milkweed bug, Oncopeltus fasciatus. Dias Fde A; Vasconcellos LR; Romeiro A; Attias M; Souto-Padrón TC; Lopes AH PLoS One; 2014; 9(9):e108746. PubMed ID: 25259791 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]