These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
42. ER Membrane Lipid Composition and Metabolism: Lipidomic Analysis. Fouillen L; Maneta-Peyret L; Moreau P Methods Mol Biol; 2018; 1691():125-137. PubMed ID: 29043674 [TBL] [Abstract][Full Text] [Related]
43. Host-specificity of Monoxenous Trypanosomatids: Statistical Analysis of the Distribution and Transmission Patterns of the Parasites from Neotropical Heteroptera. Kozminsky E; Kraeva N; Ishemgulova A; Dobáková E; Lukeš J; Kment P; Yurchenko V; Votýpka J; Maslov DA Protist; 2015 Nov; 166(5):551-68. PubMed ID: 26466163 [TBL] [Abstract][Full Text] [Related]
44. A function for plasma membrane reticular systems. Locke M; Huie P Tissue Cell; 1983; 15(6):885-902. PubMed ID: 6665784 [TBL] [Abstract][Full Text] [Related]
45. Lipid uptake by insect oocytes. Ziegler R; Van Antwerpen R Insect Biochem Mol Biol; 2006 Apr; 36(4):264-72. PubMed ID: 16551540 [TBL] [Abstract][Full Text] [Related]
46. Acquisition and biosynthesis of saturated and unsaturated fatty acids by trypanosomatids. Uttaro AD Mol Biochem Parasitol; 2014 Aug; 196(1):61-70. PubMed ID: 24726787 [TBL] [Abstract][Full Text] [Related]
47. The effects of trypanosomatids on insects. Schaub GA Adv Parasitol; 1992; 31():255-319. PubMed ID: 1496928 [No Abstract] [Full Text] [Related]
48. β-chain of ATP synthase as a lipophorin binding protein and its role in lipid transfer in the midgut of Panstrongylus megistus (Hemiptera: Reduviidae). Fruttero LL; Demartini DR; Rubiolo ER; Carlini CR; Canavoso LE Insect Biochem Mol Biol; 2014 Sep; 52():1-12. PubMed ID: 24952172 [TBL] [Abstract][Full Text] [Related]
49. Development of a TaqMan qPCR assay for trypanosomatid multi-species detection and quantification in insects. Barranco-Gómez O; De Paula JC; Parada JS; Gómez-Moracho T; Marfil AV; Zafra M; Orantes Bermejo FJ; Osuna A; De Pablos LM Parasit Vectors; 2023 Feb; 16(1):69. PubMed ID: 36788540 [TBL] [Abstract][Full Text] [Related]
50. Flight-oogenesis syndrome in a blood-sucking bug: biochemical aspects of lipid metabolism. Oliveira GA; Baptista DL; Guimarães-Motta H; Almeida IC; Masuda H; Atella GC Arch Insect Biochem Physiol; 2006 Aug; 62(4):164-75. PubMed ID: 16933278 [TBL] [Abstract][Full Text] [Related]
51. A standardizable protocol for infection of Rhodnius prolixus with Trypanosoma rangeli, which mimics natural infections and reveals physiological effects of infection upon the insect. Ferreira LL; Lorenzo MG; Elliot SL; Guarneri AA J Invertebr Pathol; 2010 Sep; 105(1):91-7. PubMed ID: 20546751 [TBL] [Abstract][Full Text] [Related]
52. The non-pathogenicity of Herpetomonas muscarum to laboratory animals. JAWAD HM J R Fac Med Iraq; 1947; 11(2):50. PubMed ID: 20252033 [No Abstract] [Full Text] [Related]
53. Ovarian nutritional resources during the reproductive cycle of the hematophagous Dipetalogaster maxima (Hemiptera: Reduviidae): focus on lipid metabolism. Leyria J; Fruttero LL; Aguirre SA; Canavoso LE Arch Insect Biochem Physiol; 2014 Nov; 87(3):148-63. PubMed ID: 25052220 [TBL] [Abstract][Full Text] [Related]
54. Multiple roles of proline transport and metabolism in trypanosomatids. Bringaud F; Barrett MP; Zilberstein D Front Biosci (Landmark Ed); 2012 Jan; 17(1):349-74. PubMed ID: 22201748 [TBL] [Abstract][Full Text] [Related]
55. The effect of propranolol on metabolism and on membrane-associated polysaccharide components of Herpetomonas muscarum muscarum. Lopes AH; Alviano CS; Angluster J; de Souza W; Jurkiewicz A Res Commun Chem Pathol Pharmacol; 1983 Nov; 42(2):245-54. PubMed ID: 6658189 [TBL] [Abstract][Full Text] [Related]
56. Ribosomal and kDNA markers distinguish two subgroups of Herpetomonas among old species and new trypanosomatids isolated from flies. Teixeira MM; Takata CS; Conchon I; Campaner M; Camargo EP J Parasitol; 1997 Feb; 83(1):58-65. PubMed ID: 9057697 [TBL] [Abstract][Full Text] [Related]
57. Electrophoretic analysis of endonuclease-generated fragments of k-DNA, of esterase isoenzymes, and of surface proteins as aids for species identification of insect trypanosomatids. Camargo EP; Mattei DM; Barbieri CL; Morel CM J Protozool; 1982 May; 29(2):251-8. PubMed ID: 6284925 [TBL] [Abstract][Full Text] [Related]
58. Pterin transport and metabolism in Leishmania and related trypanosomatid parasites. Ouellette M; Drummelsmith J; El-Fadili A; Kündig C; Richard D; Roy G Int J Parasitol; 2002 Apr; 32(4):385-98. PubMed ID: 11849635 [TBL] [Abstract][Full Text] [Related]
60. Biochemical and phylogenetic analyses of phosphatidylinositol production in Angomonas deanei, an endosymbiont-harboring trypanosomatid. de Azevedo-Martins AC; Alves JM; de Mello FG; Vasconcelos AT; de Souza W; Einicker-Lamas M; Motta MC Parasit Vectors; 2015 Apr; 8():247. PubMed ID: 25903782 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]