BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

220 related articles for article (PubMed ID: 29100937)

  • 1. AnatomiCuts: Hierarchical clustering of tractography streamlines based on anatomical similarity.
    Siless V; Chang K; Fischl B; Yendiki A
    Neuroimage; 2018 Feb; 166():32-45. PubMed ID: 29100937
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Registration-free analysis of diffusion MRI tractography data across subjects through the human lifespan.
    Siless V; Davidow JY; Nielsen J; Fan Q; Hedden T; Hollinshead M; Beam E; Vidal Bustamante CM; Garrad MC; Santillana R; Smith EE; Hamadeh A; Snyder J; Drews MK; Van Dijk KRA; Sheridan M; Somerville LH; Yendiki A
    Neuroimage; 2020 Jul; 214():116703. PubMed ID: 32151759
    [TBL] [Abstract][Full Text] [Related]  

  • 3. How many streamlines are required for reliable probabilistic tractography? Solutions for microstructural measurements and neurosurgical planning.
    Reid LB; Cespedes MI; Pannek K
    Neuroimage; 2020 May; 211():116646. PubMed ID: 32084566
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Auto-encoded Latent Representations of White Matter Streamlines for Quantitative Distance Analysis.
    Zhong S; Chen Z; Egan G
    Neuroinformatics; 2022 Oct; 20(4):1105-1120. PubMed ID: 35731372
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Population-averaged atlas of the macroscale human structural connectome and its network topology.
    Yeh FC; Panesar S; Fernandes D; Meola A; Yoshino M; Fernandez-Miranda JC; Vettel JM; Verstynen T
    Neuroimage; 2018 Sep; 178():57-68. PubMed ID: 29758339
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Generative Sampling in Bundle Tractography using Autoencoders (GESTA).
    Legarreta JH; Petit L; Jodoin PM; Descoteaux M
    Med Image Anal; 2023 Apr; 85():102761. PubMed ID: 36773366
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Fibre orientation atlas guided rapid segmentation of white matter tracts.
    Young F; Aquilina K; Seunarine KK; Mancini L; Clark CA; Clayden JD
    Hum Brain Mapp; 2024 Feb; 45(2):e26578. PubMed ID: 38339907
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Spatial correspondence of spinal cord white matter tracts using diffusion tensor imaging, fibre tractography, and atlas-based segmentation.
    McLachlin S; Leung J; Sivan V; Quirion PO; Wilkie P; Cohen-Adad J; Whyne CM; Hardisty MR
    Neuroradiology; 2021 Mar; 63(3):373-380. PubMed ID: 33447915
    [TBL] [Abstract][Full Text] [Related]  

  • 9. TractSeg - Fast and accurate white matter tract segmentation.
    Wasserthal J; Neher P; Maier-Hein KH
    Neuroimage; 2018 Dec; 183():239-253. PubMed ID: 30086412
    [TBL] [Abstract][Full Text] [Related]  

  • 10. 3D-SSF: A bio-inspired approach for dynamic multi-subject clustering of white matter tracts.
    Chekir A; Hassas S; Descoteaux M; Côté M; Garyfallidis E; Oulebsir-Boumghar F
    Comput Biol Med; 2017 Apr; 83():10-21. PubMed ID: 28188985
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Test-retest reproducibility of white matter parcellation using diffusion MRI tractography fiber clustering.
    Zhang F; Wu Y; Norton I; Rathi Y; Golby AJ; O'Donnell LJ
    Hum Brain Mapp; 2019 Jul; 40(10):3041-3057. PubMed ID: 30875144
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Modelling white matter in gyral blades as a continuous vector field.
    Cottaar M; Bastiani M; Boddu N; Glasser MF; Haber S; van Essen DC; Sotiropoulos SN; Jbabdi S
    Neuroimage; 2021 Feb; 227():117693. PubMed ID: 33385545
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Using diffusion MRI data acquired with ultra-high gradient strength to improve tractography in routine-quality data.
    Maffei C; Lee C; Planich M; Ramprasad M; Ravi N; Trainor D; Urban Z; Kim M; Jones RJ; Henin A; Hofmann SG; Pizzagalli DA; Auerbach RP; Gabrieli JDE; Whitfield-Gabrieli S; Greve DN; Haber SN; Yendiki A
    Neuroimage; 2021 Dec; 245():118706. PubMed ID: 34780916
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Recognition of white matter bundles using local and global streamline-based registration and clustering.
    Garyfallidis E; Côté MA; Rheault F; Sidhu J; Hau J; Petit L; Fortin D; Cunanne S; Descoteaux M
    Neuroimage; 2018 Apr; 170():283-295. PubMed ID: 28712994
    [TBL] [Abstract][Full Text] [Related]  

  • 15. An atlas of white matter anatomy, its variability, and reproducibility based on constrained spherical deconvolution of diffusion MRI.
    Radwan AM; Sunaert S; Schilling K; Descoteaux M; Landman BA; Vandenbulcke M; Theys T; Dupont P; Emsell L
    Neuroimage; 2022 Jul; 254():119029. PubMed ID: 35231632
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Modeling topographic regularity in structural brain connectivity with application to tractogram filtering.
    Wang J; Aydogan DB; Varma R; Toga AW; Shi Y
    Neuroimage; 2018 Dec; 183():87-98. PubMed ID: 30081193
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Fast Automatic Segmentation of White Matter Streamlines Based on a Multi-Subject Bundle Atlas.
    Labra N; Guevara P; Duclap D; Houenou J; Poupon C; Mangin JF; Figueroa M
    Neuroinformatics; 2017 Jan; 15(1):71-86. PubMed ID: 27722821
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Fast Streamline Search: An Exact Technique for Diffusion MRI Tractography.
    St-Onge E; Garyfallidis E; Collins DL
    Neuroinformatics; 2022 Oct; 20(4):1093-1104. PubMed ID: 35716314
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Connectomes from streamlines tractography: Assigning streamlines to brain parcellations is not trivial but highly consequential.
    Yeh CH; Smith RE; Dhollander T; Calamante F; Connelly A
    Neuroimage; 2019 Oct; 199():160-171. PubMed ID: 31082471
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Population-based tract-to-region connectome of the human brain and its hierarchical topology.
    Yeh FC
    Nat Commun; 2022 Aug; 13(1):4933. PubMed ID: 35995773
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.