These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
313 related articles for article (PubMed ID: 29101049)
1. Potentialities of active membranes with immobilized laccase for Bisphenol A degradation. Barrios-Estrada C; Rostro-Alanis MJ; Parra AL; Belleville MP; Sanchez-Marcano J; Iqbal HMN; Parra-Saldívar R Int J Biol Macromol; 2018 Mar; 108():837-844. PubMed ID: 29101049 [TBL] [Abstract][Full Text] [Related]
2. Characterization of free and immobilized laccase from Cyberlindnera fabianii and application in degradation of bisphenol A. Olajuyigbe FM; Adetuyi OY; Fatokun CO Int J Biol Macromol; 2019 Mar; 125():856-864. PubMed ID: 30557644 [TBL] [Abstract][Full Text] [Related]
3. Hybrid membrane with TiO2 based bio-catalytic nanoparticle suspension system for the degradation of bisphenol-A. Hou J; Dong G; Luu B; Sengpiel RG; Ye Y; Wessling M; Chen V Bioresour Technol; 2014 Oct; 169():475-483. PubMed ID: 25084046 [TBL] [Abstract][Full Text] [Related]
4. Immobilization of laccase from the white rot fungus Coriolopsis polyzona and use of the immobilized biocatalyst for the continuous elimination of endocrine disrupting chemicals. Cabana H; Alexandre C; Agathos SN; Jones JP Bioresour Technol; 2009 Jul; 100(14):3447-58. PubMed ID: 19329308 [TBL] [Abstract][Full Text] [Related]
5. Large-scale aerosol-assisted synthesis of biofriendly Fe₂O₃ yolk-shell particles: a promising support for enzyme immobilization. Patel SK; Choi SH; Kang YC; Lee JK Nanoscale; 2016 Mar; 8(12):6728-38. PubMed ID: 26952722 [TBL] [Abstract][Full Text] [Related]
6. Immobilization of laccase of Pycnoporus sanguineus CS43. Gonzalez-Coronel LA; Cobas M; Rostro-Alanis MJ; Parra-Saldívar R; Hernandez-Luna C; Pazos M; Sanromán MÁ N Biotechnol; 2017 Oct; 39(Pt A):141-149. PubMed ID: 28011289 [TBL] [Abstract][Full Text] [Related]
7. A promising laccase immobilization approach for Bisphenol A removal from aqueous solutions. Lassouane F; Aït-Amar H; Amrani S; Rodriguez-Couto S Bioresour Technol; 2019 Jan; 271():360-367. PubMed ID: 30293031 [TBL] [Abstract][Full Text] [Related]
8. Assessing the use of nanoimmobilized laccases to remove micropollutants from wastewater. Arca-Ramos A; Ammann EM; Gasser CA; Nastold P; Eibes G; Feijoo G; Lema JM; Moreira MT; Corvini PF Environ Sci Pollut Res Int; 2016 Feb; 23(4):3217-28. PubMed ID: 26490891 [TBL] [Abstract][Full Text] [Related]
10. Biodegradation of bisphenol A and decolorization of synthetic dyes by laccase from white-rot fungus, Trametes polyzona. Chairin T; Nitheranont T; Watanabe A; Asada Y; Khanongnuch C; Lumyong S Appl Biochem Biotechnol; 2013 Jan; 169(2):539-45. PubMed ID: 23239411 [TBL] [Abstract][Full Text] [Related]
11. Study on transformation and degradation of bisphenol A by Trametes versicolor laccase and simulation of molecular docking. Hongyan L; Zexiong Z; Shiwei X; He X; Yinian Z; Haiyun L; Zhongsheng Y Chemosphere; 2019 Jun; 224():743-750. PubMed ID: 30851526 [TBL] [Abstract][Full Text] [Related]
12. Electron beam-induced immobilization of laccase on porous supports for waste water treatment applications. Jahangiri E; Reichelt S; Thomas I; Hausmann K; Schlosser D; Schulze A Molecules; 2014 Aug; 19(8):11860-82. PubMed ID: 25111026 [TBL] [Abstract][Full Text] [Related]
13. Reversible immobilization of laccase onto metal-ion-chelated magnetic microspheres for bisphenol A removal. Lin J; Liu Y; Chen S; Le X; Zhou X; Zhao Z; Ou Y; Yang J Int J Biol Macromol; 2016 Mar; 84():189-99. PubMed ID: 26691384 [TBL] [Abstract][Full Text] [Related]
14. Preparation and Optimisation of Cross-Linked Enzyme Aggregates Using Native Isolate White Rot Fungi Trametes versicolor and Fomes fomentarius for the Decolourisation of Synthetic Dyes. Vršanská M; Voběrková S; Jiménez Jiménez AM; Strmiska V; Adam V Int J Environ Res Public Health; 2017 Dec; 15(1):. PubMed ID: 29295505 [TBL] [Abstract][Full Text] [Related]
15. Polyketone-based membrane support improves the organic solvent resistance of laccase catalysis. Liu C; Saeki D; Cheng L; Luo J; Matsuyama H J Colloid Interface Sci; 2019 May; 544():230-240. PubMed ID: 30851684 [TBL] [Abstract][Full Text] [Related]
16. Biodegradation of bisphenol A by the immobilized laccase on some synthesized and modified forms of zeolite Y. Taghizadeh T; Talebian-Kiakalaieh A; Jahandar H; Amin M; Tarighi S; Faramarzi MA J Hazard Mater; 2020 Mar; 386():121950. PubMed ID: 31881496 [TBL] [Abstract][Full Text] [Related]
17. Preparation and characterization of cross-linked laccase aggregates and their application to the elimination of endocrine disrupting chemicals. Cabana H; Jones JP; Agathos SN J Biotechnol; 2007 Oct; 132(1):23-31. PubMed ID: 17884220 [TBL] [Abstract][Full Text] [Related]
18. Potentiality of a ceramic membrane reactor for the laccase-catalyzed removal of bisphenol A from secondary effluents. Arca-Ramos A; Eibes G; Feijoo G; Lema JM; Moreira MT Appl Microbiol Biotechnol; 2015 Nov; 99(21):9299-308. PubMed ID: 26209248 [TBL] [Abstract][Full Text] [Related]
19. High efficiency biotransformation of bisphenol A in a fluidized bed reactor using stabilized laccase in porous silica. Piao M; Zou D; Ren X; Gao S; Qin C; Piao Y Enzyme Microb Technol; 2019 Jul; 126():1-8. PubMed ID: 31000159 [TBL] [Abstract][Full Text] [Related]
20. Biodegradation of bisphenols with immobilized laccase or tyrosinase on polyacrylonitrile beads. Nicolucci C; Rossi S; Menale C; Godjevargova T; Ivanov Y; Bianco M; Mita L; Bencivenga U; Mita DG; Diano N Biodegradation; 2011 Jun; 22(3):673-83. PubMed ID: 21125313 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]