These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

541 related articles for article (PubMed ID: 29101114)

  • 1. Synthetic Lethal Vulnerabilities in
    Aguirre AJ; Hahn WC
    Cold Spring Harb Perspect Med; 2018 Aug; 8(8):. PubMed ID: 29101114
    [TBL] [Abstract][Full Text] [Related]  

  • 2. KRAS: A Promising Therapeutic Target for Cancer Treatment.
    Wu HZ; Xiao JQ; Xiao SS; Cheng Y
    Curr Top Med Chem; 2019; 19(23):2081-2097. PubMed ID: 31486755
    [TBL] [Abstract][Full Text] [Related]  

  • 3. KRAS as a Therapeutic Target.
    McCormick F
    Clin Cancer Res; 2015 Apr; 21(8):1797-801. PubMed ID: 25878360
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Targeting Mutant KRAS for Anticancer Therapy.
    Chen F; Alphonse MP; Liu Y; Liu Q
    Curr Top Med Chem; 2019; 19(23):2098-2113. PubMed ID: 31475898
    [TBL] [Abstract][Full Text] [Related]  

  • 5. KRAS Alleles: The Devil Is in the Detail.
    Haigis KM
    Trends Cancer; 2017 Oct; 3(10):686-697. PubMed ID: 28958387
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Dependence on the Pyrimidine Biosynthetic Enzyme DHODH Is a Synthetic Lethal Vulnerability in Mutant KRAS-Driven Cancers.
    Koundinya M; Sudhalter J; Courjaud A; Lionne B; Touyer G; Bonnet L; Menguy I; Schreiber I; Perrault C; Vougier S; Benhamou B; Zhang B; He T; Gao Q; Gee P; Simard D; Castaldi MP; Tomlinson R; Reiling S; Barrague M; Newcombe R; Cao H; Wang Y; Sun F; Murtie J; Munson M; Yang E; Harper D; Bouaboula M; Pollard J; Grepin C; Garcia-Echeverria C; Cheng H; Adrian F; Winter C; Licht S; Cornella-Taracido I; Arrebola R; Morris A
    Cell Chem Biol; 2018 Jun; 25(6):705-717.e11. PubMed ID: 29628435
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Enhanced dependency of KRAS-mutant colorectal cancer cells on RAD51-dependent homologous recombination repair identified from genetic interactions in Saccharomyces cerevisiae.
    Kalimutho M; Bain AL; Mukherjee B; Nag P; Nanayakkara DM; Harten SK; Harris JL; Subramanian GN; Sinha D; Shirasawa S; Srihari S; Burma S; Khanna KK
    Mol Oncol; 2017 May; 11(5):470-490. PubMed ID: 28173629
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Targeting KRAS mutant cancers by preventing signaling transduction in the MAPK pathway.
    Korzeniecki C; Priefer R
    Eur J Med Chem; 2021 Feb; 211():113006. PubMed ID: 33228976
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Exploiting RAS Nucleotide Cycling as a Strategy for Drugging RAS-Driven Cancers.
    Mattox TE; Chen X; Maxuitenko YY; Keeton AB; Piazza GA
    Int J Mol Sci; 2019 Dec; 21(1):. PubMed ID: 31878223
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Mapping Effector-Phenotype Landscapes in KRAS-Driven Cancers.
    Winter PS; Wood KC
    Trends Cancer; 2018 May; 4(5):333-335. PubMed ID: 29709255
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Improving Prospects for Targeting RAS.
    Singh H; Longo DL; Chabner BA
    J Clin Oncol; 2015 Nov; 33(31):3650-9. PubMed ID: 26371146
    [TBL] [Abstract][Full Text] [Related]  

  • 12. KRAS-dependent suppression of MYC enhances the sensitivity of cancer cells to cytotoxic agents.
    Ischenko I; Zhi J; Hayman MJ; Petrenko O
    Oncotarget; 2017 Mar; 8(11):17995-18009. PubMed ID: 28152508
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Synthetic Lethality of a Novel Small Molecule Against Mutant KRAS-Expressing Cancer Cells Involves AKT-Dependent ROS Production.
    Iskandar K; Rezlan M; Yadav SK; Foo CH; Sethi G; Qiang Y; Bellot GL; Pervaiz S
    Antioxid Redox Signal; 2016 May; 24(14):781-94. PubMed ID: 26714745
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Kras mutations increase telomerase activity and targeting telomerase is a promising therapeutic strategy for Kras-mutant NSCLC.
    Liu W; Yin Y; Wang J; Shi B; Zhang L; Qian D; Li C; Zhang H; Wang S; Zhu J; Gao L; Zhang Q; Jia B; Hao L; Wang C; Zhang B
    Oncotarget; 2017 Jan; 8(1):179-190. PubMed ID: 27329725
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Synthetic lethal interaction between oncogenic KRAS dependency and STK33 suppression in human cancer cells.
    Scholl C; Fröhling S; Dunn IF; Schinzel AC; Barbie DA; Kim SY; Silver SJ; Tamayo P; Wadlow RC; Ramaswamy S; Döhner K; Bullinger L; Sandy P; Boehm JS; Root DE; Jacks T; Hahn WC; Gilliland DG
    Cell; 2009 May; 137(5):821-34. PubMed ID: 19490892
    [TBL] [Abstract][Full Text] [Related]  

  • 16. KRAS: From undruggable to a druggable Cancer Target.
    Uprety D; Adjei AA
    Cancer Treat Rev; 2020 Sep; 89():102070. PubMed ID: 32711246
    [TBL] [Abstract][Full Text] [Related]  

  • 17. KRASG12C inhibitor: combing for combination.
    Chakraborty A
    Biochem Soc Trans; 2020 Dec; 48(6):2691-2701. PubMed ID: 33242077
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A combination therapy for KRAS-mutant lung cancer by targeting synthetic lethal partners of mutant KRAS.
    Pang X; Liu M
    Chin J Cancer; 2016 Oct; 35(1):92. PubMed ID: 27793187
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Suppression of KRas-mutant cancer through the combined inhibition of KRAS with PLK1 and ROCK.
    Wang J; Hu K; Guo J; Cheng F; Lv J; Jiang W; Lu W; Liu J; Pang X; Liu M
    Nat Commun; 2016 May; 7():11363. PubMed ID: 27193833
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A Landscape of Therapeutic Cooperativity in KRAS Mutant Cancers Reveals Principles for Controlling Tumor Evolution.
    Anderson GR; Winter PS; Lin KH; Nussbaum DP; Cakir M; Stein EM; Soderquist RS; Crawford L; Leeds JC; Newcomb R; Stepp P; Yip C; Wardell SE; Tingley JP; Ali M; Xu M; Ryan M; McCall SJ; McRee AJ; Counter CM; Der CJ; Wood KC
    Cell Rep; 2017 Jul; 20(4):999-1015. PubMed ID: 28746882
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 28.