These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

151 related articles for article (PubMed ID: 29101396)

  • 1. Ultra-low and ultra-broad-band nonlinear acoustic metamaterials.
    Fang X; Wen J; Bonello B; Yin J; Yu D
    Nat Commun; 2017 Nov; 8(1):1288. PubMed ID: 29101396
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Multi-Order Asymmetric Acoustic Metamaterials with Broad Bandgaps at Subwavelength Scales.
    Wang X; Chen W; Li S
    Materials (Basel); 2023 Dec; 16(24):. PubMed ID: 38138729
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Broadband and tunable one-dimensional strongly nonlinear acoustic metamaterials: Theoretical study.
    Fang X; Wen J; Yin J; Yu D; Xiao Y
    Phys Rev E; 2016 Nov; 94(5-1):052206. PubMed ID: 27967186
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Engineering three-dimensional labyrinthine fractal acoustic metamaterials with low-frequency multi-band sound suppression.
    Man X; Xia B; Luo Z; Liu J; Li K; Nie Y
    J Acoust Soc Am; 2021 Jan; 149(1):308. PubMed ID: 33514175
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Pentamode metamaterials with ultra-low-frequency single-mode band gap based on constituent materials.
    Huang Y; Zhang X
    J Phys Condens Matter; 2021 Apr; 33(18):. PubMed ID: 33721850
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Three-dimensional ultrathin planar lenses by acoustic metamaterials.
    Li Y; Yu G; Liang B; Zou X; Li G; Cheng S; Cheng J
    Sci Rep; 2014 Oct; 4():6830. PubMed ID: 25354997
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Design and optimization of three-dimensional composite multilayer cylindrical pentamode metamaterials for controlling low frequency acoustic waves.
    Cai C; Wang X; Wang Q; Li M; He G; Wang Z; Qin Y
    Sci Rep; 2022 Apr; 12(1):5594. PubMed ID: 35379842
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Ultra-broadband illusion acoustics for space and time camouflages.
    Liu C; Ma C; Lai Y; Fang NX
    Nat Commun; 2024 Sep; 15(1):8046. PubMed ID: 39277584
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Dispersionless Manipulation of Reflected Acoustic Wavefront by Subwavelength Corrugated Surface.
    Zhu YF; Zou XY; Li RQ; Jiang X; Tu J; Liang B; Cheng JC
    Sci Rep; 2015 Jun; 5():10966. PubMed ID: 26077772
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Numerical investigation of amplitude-dependent dynamic response in acoustic metamaterials with nonlinear oscillators.
    Manimala JM; Sun CT
    J Acoust Soc Am; 2016 Jun; 139(6):3365. PubMed ID: 27369163
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Local resonance bandgaps in periodic media: theory and experiment.
    Raghavan L; Phani AS
    J Acoust Soc Am; 2013 Sep; 134(3):1950-9. PubMed ID: 23967928
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Low-Frequency Bandgaps of the Lightweight Single-Phase Acoustic Metamaterials with Locally Resonant Archimedean Spirals.
    Gao H; Yan Q; Liu X; Zhang Y; Sun Y; Ding Q; Wang L; Xu J; Yan H
    Materials (Basel); 2022 Jan; 15(1):. PubMed ID: 35009519
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Quasi-phase-matched backward second-harmonic generation by complementary media in nonlinear metamaterials.
    Quan L; Liu X; Gong X
    J Acoust Soc Am; 2012 Oct; 132(4):2852-6. PubMed ID: 23039551
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Two-Dimensional Numerical Simulations of Ultrasound in Liquids with Gas Bubble Agglomerates: Examples of Bubbly-Liquid-Type Acoustic Metamaterials (BLAMMs).
    Vanhille C
    Sensors (Basel); 2017 Jan; 17(1):. PubMed ID: 28106748
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Ultra-sparse metasurface for high reflection of low-frequency sound based on artificial Mie resonances.
    Cheng Y; Zhou C; Yuan BG; Wu DJ; Wei Q; Liu XJ
    Nat Mater; 2015 Oct; 14(10):1013-9. PubMed ID: 26322718
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Enhanced acoustic sensing through wave compression and pressure amplification in anisotropic metamaterials.
    Chen Y; Liu H; Reilly M; Bae H; Yu M
    Nat Commun; 2014 Oct; 5():5247. PubMed ID: 25316410
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Homogenization of quasi-1d metamaterials and the problem of extended bandwidth.
    Goncharenko AV; Venger EF; Pinchuk AO
    Opt Express; 2014 Feb; 22(3):2429-42. PubMed ID: 24663534
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Bioinspired Patterned Bubbles for Broad and Low-Frequency Acoustic Blocking.
    Huang Z; Zhao S; Su M; Yang Q; Li Z; Cai Z; Zhao H; Hu X; Zhou H; Li F; Yang J; Wang Y; Song Y
    ACS Appl Mater Interfaces; 2020 Jan; 12(1):1757-1764. PubMed ID: 31818097
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Experimental demonstration of an acoustic magnifying hyperlens.
    Li J; Fok L; Yin X; Bartal G; Zhang X
    Nat Mater; 2009 Dec; 8(12):931-4. PubMed ID: 19855382
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Deep-subwavelength control of acoustic waves in an ultra-compact metasurface lens.
    Chen J; Xiao J; Lisevych D; Shakouri A; Fan Z
    Nat Commun; 2018 Nov; 9(1):4920. PubMed ID: 30467347
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.