These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

144 related articles for article (PubMed ID: 29101586)

  • 1. A lariat-derived circular RNA is required for plant development in Arabidopsis.
    Cheng J; Zhang Y; Li Z; Wang T; Zhang X; Zheng B
    Sci China Life Sci; 2018 Feb; 61(2):204-213. PubMed ID: 29101586
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Identification of Intronic Lariat-Derived Circular RNAs in Arabidopsis by RNA Deep Sequencing.
    Wang T; Zhang X; Zheng B
    Methods Mol Biol; 2021; 2362():93-100. PubMed ID: 34195958
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A Comprehensive Map of Intron Branchpoints and Lariat RNAs in Plants.
    Zhang X; Zhang Y; Wang T; Li Z; Cheng J; Ge H; Tang Q; Chen K; Liu L; Lu C; Guo J; Zheng B; Zheng Y
    Plant Cell; 2019 May; 31(5):956-973. PubMed ID: 30894459
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Intron Lariat RNA Inhibits MicroRNA Biogenesis by Sequestering the Dicing Complex in Arabidopsis.
    Li Z; Wang S; Cheng J; Su C; Zhong S; Liu Q; Fang Y; Yu Y; Lv H; Zheng Y; Zheng B
    PLoS Genet; 2016 Nov; 12(11):e1006422. PubMed ID: 27870853
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A repertoire of intronic lariat RNAs reveals tissue-specific regulation and target mimicry potential in plants.
    Zhang Y; Zhang X; Tang Q; Li L; Jiang T; Fang Y; Zhang H; Zhai J; Ren G; Zheng B
    Sci China Life Sci; 2024 Jun; 67(6):1280-1291. PubMed ID: 38489006
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Sequestration of DBR1 to stress granules promotes lariat intronic RNAs accumulation for heat-stress tolerance.
    Wu C; Wang X; Li Y; Zhen W; Wang C; Wang X; Xie Z; Xu X; Guo S; Botella JR; Zheng B; Wang W; Song CP; Hu Z
    Nat Commun; 2024 Sep; 15(1):7696. PubMed ID: 39227617
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Dysfunctional mitochondria regulate the size of root apical meristem and leaf development in Arabidopsis.
    Hsieh WY; Liao JC; Hsieh MH
    Plant Signal Behav; 2015; 10(10):e1071002. PubMed ID: 26237004
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Regulation of the circadian clock through pre-mRNA splicing in Arabidopsis.
    Cui Z; Xu Q; Wang X
    J Exp Bot; 2014 May; 65(8):1973-80. PubMed ID: 24604736
    [TBL] [Abstract][Full Text] [Related]  

  • 9. PRP4KA, a Putative Spliceosomal Protein Kinase, Is Important for Alternative Splicing and Development in
    Kanno T; Venhuizen P; Wen TN; Lin WD; Chiou P; Kalyna M; Matzke AJM; Matzke M
    Genetics; 2018 Dec; 210(4):1267-1285. PubMed ID: 30297453
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Ectopic expression of miR396 suppresses GRF target gene expression and alters leaf growth in Arabidopsis.
    Liu D; Song Y; Chen Z; Yu D
    Physiol Plant; 2009 Jun; 136(2):223-36. PubMed ID: 19453503
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Novel long non-protein coding RNAs involved in Arabidopsis differentiation and stress responses.
    Ben Amor B; Wirth S; Merchan F; Laporte P; d'Aubenton-Carafa Y; Hirsch J; Maizel A; Mallory A; Lucas A; Deragon JM; Vaucheret H; Thermes C; Crespi M
    Genome Res; 2009 Jan; 19(1):57-69. PubMed ID: 18997003
    [TBL] [Abstract][Full Text] [Related]  

  • 12. nMAT1, a nuclear-encoded maturase involved in the trans-splicing of nad1 intron 1, is essential for mitochondrial complex I assembly and function.
    Keren I; Tal L; des Francs-Small CC; Araújo WL; Shevtsov S; Shaya F; Fernie AR; Small I; Ostersetzer-Biran O
    Plant J; 2012 Aug; 71(3):413-26. PubMed ID: 22429648
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Identification and characterization of ncRNA-associated ceRNA networks in Arabidopsis leaf development.
    Meng X; Zhang P; Chen Q; Wang J; Chen M
    BMC Genomics; 2018 Aug; 19(1):607. PubMed ID: 30103673
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The plastidic DEAD-box RNA helicase 22, HS3, is essential for plastid functions both in seed development and in seedling growth.
    Kanai M; Hayashi M; Kondo M; Nishimura M
    Plant Cell Physiol; 2013 Sep; 54(9):1431-40. PubMed ID: 23803517
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Genome-wide analyses of the transcriptomes of salicylic acid-deficient versus wild-type plants uncover Pathogen and Circadian Controlled 1 (PCC1) as a regulator of flowering time in Arabidopsis.
    Segarra S; Mir R; Martínez C; León J
    Plant Cell Environ; 2010 Jan; 33(1):11-22. PubMed ID: 19781011
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The ULT1 and ULT2 trxG genes play overlapping roles in Arabidopsis development and gene regulation.
    Monfared MM; Carles CC; Rossignol P; Pires HR; Fletcher JC
    Mol Plant; 2013 Sep; 6(5):1564-79. PubMed ID: 23446032
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Vernalization-mediated epigenetic silencing by a long intronic noncoding RNA.
    Heo JB; Sung S
    Science; 2011 Jan; 331(6013):76-9. PubMed ID: 21127216
    [TBL] [Abstract][Full Text] [Related]  

  • 18. quatre-quart1 is an indispensable U12 intron-containing gene that plays a crucial role in Arabidopsis development.
    Kwak KJ; Kim BM; Lee K; Kang H
    J Exp Bot; 2017 May; 68(11):2731-2739. PubMed ID: 28475733
    [TBL] [Abstract][Full Text] [Related]  

  • 19. RETRACTED: The mRNA of the Arabidopsis gene FT moves from leaf to shoot apex and induces flowering.
    Huang T; Böhlenius H; Eriksson S; Parcy F; Nilsson O
    Science; 2005 Sep; 309(5741):1694-6. PubMed ID: 16099949
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Regulation of leaf morphology by microRNA394 and its target LEAF CURLING RESPONSIVENESS.
    Song JB; Huang SQ; Dalmay T; Yang ZM
    Plant Cell Physiol; 2012 Jul; 53(7):1283-94. PubMed ID: 22619471
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.