BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

297 related articles for article (PubMed ID: 29101769)

  • 1. Computational approaches to chemical hazard assessment.
    Luechtefeld T; Hartung T
    ALTEX; 2017; 34(4):459-478. PubMed ID: 29101769
    [TBL] [Abstract][Full Text] [Related]  

  • 2. REACH and in silico methods: an attractive opportunity for medicinal chemists.
    Nicolotti O; Benfenati E; Carotti A; Gadaleta D; Gissi A; Mangiatordi GF; Novellino E
    Drug Discov Today; 2014 Nov; 19(11):1757-1768. PubMed ID: 24998783
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The role of the European Chemicals Bureau in promoting the regulatory use of (Q)SAR methods.
    Worth AP; Bassan A; De Bruijn J; Gallegos Saliner A; Netzeva T; Patlewicz G; Pavan M; Tsakovska I; Eisenreich S
    SAR QSAR Environ Res; 2007; 18(1-2):111-25. PubMed ID: 17365963
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Machine Learning Methods in Computational Toxicology.
    Baskin II
    Methods Mol Biol; 2018; 1800():119-139. PubMed ID: 29934890
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Applying quantitative structure-activity relationship approaches to nanotoxicology: current status and future potential.
    Winkler DA; Mombelli E; Pietroiusti A; Tran L; Worth A; Fadeel B; McCall MJ
    Toxicology; 2013 Nov; 313(1):15-23. PubMed ID: 23165187
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Machine Learning and Artificial Intelligence in Toxicological Sciences.
    Lin Z; Chou WC
    Toxicol Sci; 2022 Aug; 189(1):7-19. PubMed ID: 35861448
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A review on machine learning methods for in silico toxicity prediction.
    Idakwo G; Luttrell J; Chen M; Hong H; Zhou Z; Gong P; Zhang C
    J Environ Sci Health C Environ Carcinog Ecotoxicol Rev; 2018; 36(4):169-191. PubMed ID: 30628866
    [TBL] [Abstract][Full Text] [Related]  

  • 8. In silico prediction of toxicity of non-congeneric industrial chemicals using ensemble learning based modeling approaches.
    Singh KP; Gupta S
    Toxicol Appl Pharmacol; 2014 Mar; 275(3):198-212. PubMed ID: 24463095
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Understanding and overcoming the technical challenges in using in silico predictions in regulatory decisions of complex toxicological endpoints - A pesticide perspective for regulatory toxicologists with a focus on machine learning models.
    Burgoon LD; Kluxen FM; Frericks M
    Regul Toxicol Pharmacol; 2023 Jan; 137():105311. PubMed ID: 36494002
    [TBL] [Abstract][Full Text] [Related]  

  • 10. From QSAR to QSIIR: searching for enhanced computational toxicology models.
    Zhu H
    Methods Mol Biol; 2013; 930():53-65. PubMed ID: 23086837
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Substance-tailored testing strategies in toxicology: an in silico methodology based on QSAR modeling of toxicological thresholds and Monte Carlo simulations of toxicological testing.
    Péry AR; Desmots S; Mombelli E
    Regul Toxicol Pharmacol; 2010 Feb; 56(1):82-92. PubMed ID: 19766156
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Computational toxicology as implemented by the U.S. EPA: providing high throughput decision support tools for screening and assessing chemical exposure, hazard and risk.
    Kavlock R; Dix D
    J Toxicol Environ Health B Crit Rev; 2010 Feb; 13(2-4):197-217. PubMed ID: 20574897
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Deep learning for predicting toxicity of chemicals: a mini review.
    Tang W; Chen J; Wang Z; Xie H; Hong H
    J Environ Sci Health C Environ Carcinog Ecotoxicol Rev; 2018; 36(4):252-271. PubMed ID: 30821199
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Current Knowledge on the Use of Computational Toxicology in Hazard Assessment of Metallic Engineered Nanomaterials.
    Chen G; Peijnenburg W; Xiao Y; Vijver MG
    Int J Mol Sci; 2017 Jul; 18(7):. PubMed ID: 28704975
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Informing mechanistic toxicology with computational molecular models.
    Goldsmith MR; Peterson SD; Chang DT; Transue TR; Tornero-Velez R; Tan YM; Dary CC
    Methods Mol Biol; 2012; 929():139-65. PubMed ID: 23007429
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Integrated testing and intelligent assessment-new challenges under REACH.
    Ahlers J; Stock F; Werschkun B
    Environ Sci Pollut Res Int; 2008 Oct; 15(7):565-72. PubMed ID: 18818964
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A Toxicity Prediction Tool for Potential Agonist/Antagonist Activities in Molecular Initiating Events Based on Chemical Structures.
    Kurosaki K; Wu R; Uesawa Y
    Int J Mol Sci; 2020 Oct; 21(21):. PubMed ID: 33113912
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Multispecies QSAR modeling for predicting the aquatic toxicity of diverse organic chemicals for regulatory toxicology.
    Singh KP; Gupta S; Kumar A; Mohan D
    Chem Res Toxicol; 2014 May; 27(5):741-53. PubMed ID: 24738471
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Novel Uses of In Vitro Data to Develop Quantitative Biological Activity Relationship Models for in Vivo Carcinogenicity Prediction.
    Pradeep P; Povinelli RJ; Merrill SJ; Bozdag S; Sem DS
    Mol Inform; 2015 Apr; 34(4):236-45. PubMed ID: 27490169
    [TBL] [Abstract][Full Text] [Related]  

  • 20. In silico prediction of ocular toxicity of compounds using explainable machine learning and deep learning approaches.
    Zhou Y; Wang Z; Huang Z; Li W; Chen Y; Yu X; Tang Y; Liu G
    J Appl Toxicol; 2024 Jun; 44(6):892-907. PubMed ID: 38329145
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.