These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

181 related articles for article (PubMed ID: 29101794)

  • 1. Double temporal sparsity based accelerated reconstruction of compressively sensed resting-state fMRI.
    Aggarwal P; Gupta A
    Comput Biol Med; 2017 Dec; 91():255-266. PubMed ID: 29101794
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Prior data assisted compressed sensing: a novel MR imaging strategy for real time tracking of lung tumors.
    Yip E; Yun J; Wachowicz K; Heikal AA; Gabos Z; Rathee S; Fallone BG
    Med Phys; 2014 Aug; 41(8):082301. PubMed ID: 25086550
    [TBL] [Abstract][Full Text] [Related]  

  • 3. k-t FASTER: Acceleration of functional MRI data acquisition using low rank constraints.
    Chiew M; Smith SM; Koopmans PJ; Graedel NN; Blumensath T; Miller KL
    Magn Reson Med; 2015 Aug; 74(2):353-64. PubMed ID: 25168207
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Exploitation of temporal redundancy in compressed sensing reconstruction of fMRI studies with a prior-based algorithm (PICCS).
    Chavarrías C; Abascal JF; Montesinos P; Desco M
    Med Phys; 2015 Jul; 42(7):3814-21. PubMed ID: 26133583
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Exploiting the wavelet structure in compressed sensing MRI.
    Chen C; Huang J
    Magn Reson Imaging; 2014 Dec; 32(10):1377-89. PubMed ID: 25153483
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Accelerated magnetic resonance imaging using the sparsity of multi-channel coil images.
    Xie G; Song Y; Shi C; Feng X; Zheng H; Weng D; Qiu B; Liu X
    Magn Reson Imaging; 2014 Feb; 32(2):175-83. PubMed ID: 24268132
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Improved FastICA algorithm in fMRI data analysis using the sparsity property of the sources.
    Ge R; Wang Y; Zhang J; Yao L; Zhang H; Long Z
    J Neurosci Methods; 2016 Apr; 263():103-14. PubMed ID: 26880161
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Blind compressive sensing dynamic MRI.
    Lingala SG; Jacob M
    IEEE Trans Med Imaging; 2013 Jun; 32(6):1132-45. PubMed ID: 23542951
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A Novel Sparse Dictionary Learning Separation (SDLS) Model With Adaptive Dictionary Mutual Incoherence Constraint for fMRI Data Analysis.
    Wang N; Zeng W; Chen D
    IEEE Trans Biomed Eng; 2016 Nov; 63(11):2376-2389. PubMed ID: 26929024
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Improving temporal resolution in fMRI using a 3D spiral acquisition and low rank plus sparse (L+S) reconstruction.
    Petrov AY; Herbst M; Andrew Stenger V
    Neuroimage; 2017 Aug; 157():660-674. PubMed ID: 28684333
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Motion-adaptive spatio-temporal regularization for accelerated dynamic MRI.
    Asif MS; Hamilton L; Brummer M; Romberg J
    Magn Reson Med; 2013 Sep; 70(3):800-12. PubMed ID: 23132400
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Dual Temporal and Spatial Sparse Representation for Inferring Group-Wise Brain Networks From Resting-State fMRI Dataset.
    Gong J; Liu X; Liu T; Zhou J; Sun G; Tian J
    IEEE Trans Biomed Eng; 2018 May; 65(5):1035-1048. PubMed ID: 28796604
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Automatic classification and removal of structured physiological noise for resting state functional connectivity MRI analysis.
    Lee K; Khoo HM; Fourcade C; Gotman J; Grova C
    Magn Reson Imaging; 2019 May; 58():97-107. PubMed ID: 30695721
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Motion correction based reconstruction method for compressively sampled cardiac MR imaging.
    Ahmed AH; Qureshi IM; Shah JA; Zaheer M
    Magn Reson Imaging; 2017 Feb; 36():159-166. PubMed ID: 27746392
    [TBL] [Abstract][Full Text] [Related]  

  • 15. ICA-based artefact removal and accelerated fMRI acquisition for improved resting state network imaging.
    Griffanti L; Salimi-Khorshidi G; Beckmann CF; Auerbach EJ; Douaud G; Sexton CE; Zsoldos E; Ebmeier KP; Filippini N; Mackay CE; Moeller S; Xu J; Yacoub E; Baselli G; Ugurbil K; Miller KL; Smith SM
    Neuroimage; 2014 Jul; 95():232-47. PubMed ID: 24657355
    [TBL] [Abstract][Full Text] [Related]  

  • 16. SPARK: Sparsity-based analysis of reliable k-hubness and overlapping network structure in brain functional connectivity.
    Lee K; Lina JM; Gotman J; Grova C
    Neuroimage; 2016 Jul; 134():434-449. PubMed ID: 27046111
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Compressed sensing MRI based on image decomposition model and group sparsity.
    Fan X; Lian Q; Shi B
    Magn Reson Imaging; 2019 Jul; 60():101-109. PubMed ID: 30910695
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Magnetic resonance image reconstruction using trained geometric directions in 2D redundant wavelets domain and non-convex optimization.
    Ning B; Qu X; Guo D; Hu C; Chen Z
    Magn Reson Imaging; 2013 Nov; 31(9):1611-22. PubMed ID: 23992629
    [TBL] [Abstract][Full Text] [Related]  

  • 19. High spatial resolution compressed sensing (HSPARSE) functional MRI.
    Fang Z; Van Le N; Choy M; Lee JH
    Magn Reson Med; 2016 Aug; 76(2):440-55. PubMed ID: 26511101
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Joint sparse reconstruction of multi-contrast MRI images with graph based redundant wavelet transform.
    Lai Z; Zhang X; Guo D; Du X; Yang Y; Guo G; Chen Z; Qu X
    BMC Med Imaging; 2018 May; 18(1):7. PubMed ID: 29724180
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.