These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
192 related articles for article (PubMed ID: 29101896)
1. A simplified application (APP) for the parametric design of screw-plate fixation of bone fractures. Chung CY J Mech Behav Biomed Mater; 2018 Jan; 77():642-648. PubMed ID: 29101896 [TBL] [Abstract][Full Text] [Related]
2. Semi-rigid screws provide an auxiliary option to plate working length to control interfragmentary movement in locking plate fixation at the distal femur. Heyland M; Duda GN; Haas NP; Trepczynski A; Döbele S; Höntzsch D; Schaser KD; Märdian S Injury; 2015 Oct; 46 Suppl 4():S24-32. PubMed ID: 26542863 [TBL] [Abstract][Full Text] [Related]
3. Implant Material, Type of Fixation at the Shaft, and Position of Plate Modify Biomechanics of Distal Femur Plate Osteosynthesis. Kandemir U; Augat P; Konowalczyk S; Wipf F; von Oldenburg G; Schmidt U J Orthop Trauma; 2017 Aug; 31(8):e241-e246. PubMed ID: 28394844 [TBL] [Abstract][Full Text] [Related]
4. Mechanical performance and implications on bone healing of different screw configurations for plate fixation of diaphyseal tibia fractures: a computational study. Travascio F; Buller LT; Milne E; Latta L Eur J Orthop Surg Traumatol; 2021 Jan; 31(1):121-130. PubMed ID: 32725431 [TBL] [Abstract][Full Text] [Related]
6. Does lag screw fixation of condylar fractures result in adequate stability? A finite element analysis. Conci RA; Garbin EÁ; Griza GL; Érnica NM; Noritomi PY; Silveira Tomazi FH; Fritscher GG; Heitz C J Craniomaxillofac Surg; 2018 Jun; 46(6):1041-1045. PubMed ID: 29735385 [TBL] [Abstract][Full Text] [Related]
7. Biomechanical effect of the configuration of screw hole style on locking plate fixation in proximal humerus fracture with a simulated gap: A finite element analysis. Zhang YK; Wei HW; Lin KP; Chen WC; Tsai CL; Lin KJ Injury; 2016 Jun; 47(6):1191-5. PubMed ID: 26975793 [TBL] [Abstract][Full Text] [Related]
8. Finite Element- and Design of Experiment-Derived Optimization of Screw Configurations and a Locking Plate for Internal Fixation System. Sheng W; Ji A; Fang R; He G; Chen C Comput Math Methods Med; 2019; 2019():5636528. PubMed ID: 31531124 [TBL] [Abstract][Full Text] [Related]
9. Biomechanical analysis and clinical effects of bridge combined fixation system for femoral fractures. Wang DX; Xiong Y; Deng H; Jia F; Gu S; Liu BL; Li QH; Pu Q; Zhang ZZ Proc Inst Mech Eng H; 2014 Sep; 228(9):899-907. PubMed ID: 25201264 [TBL] [Abstract][Full Text] [Related]
10. Comparison of Neck Screw and Conventional Fixation Techniques in Mandibular Condyle Fractures Using 3-Dimensional Finite Element Analysis. Conci RA; Tomazi FH; Noritomi PY; da Silva JV; Fritscher GG; Heitz C J Oral Maxillofac Surg; 2015 Jul; 73(7):1321-7. PubMed ID: 25869984 [TBL] [Abstract][Full Text] [Related]
11. Working length of locking plates determines interfragmentary movement in distal femur fractures under physiological loading. Märdian S; Schaser KD; Duda GN; Heyland M Clin Biomech (Bristol); 2015 May; 30(4):391-6. PubMed ID: 25716162 [TBL] [Abstract][Full Text] [Related]
12. [Finite Element Analysis of Screw Layout of Locking Plate for Treating Femoral Shaft Fracture]. Sheng W; Ji A; Chen C Zhongguo Yi Liao Qi Xie Za Zhi; 2017 May; 41(3):196-199. PubMed ID: 29862767 [TBL] [Abstract][Full Text] [Related]
13. Biomechanical and histological evaluation of the application of biodegradable poly-L-lactic cushion to the plate internal fixation for bone fracture healing. Fan Y; Xiu K; Duan H; Zhang M Clin Biomech (Bristol); 2008; 23 Suppl 1():S7-S16. PubMed ID: 18291564 [TBL] [Abstract][Full Text] [Related]
14. Feasibility of carbon-fiber-reinforced polymer fixation plates for treatment of atrophic mandibular fracture: A finite element method. Nurettin D; Burak B J Craniomaxillofac Surg; 2018 Dec; 46(12):2182-2189. PubMed ID: 30340836 [TBL] [Abstract][Full Text] [Related]
15. Biomechanical effect of medial cortical support and medial screw support on locking plate fixation in proximal humeral fractures with a medial gap: a finite element analysis. Yang P; Zhang Y; Liu J; Xiao J; Ma LM; Zhu CR Acta Orthop Traumatol Turc; 2015; 49(2):203-9. PubMed ID: 26012943 [TBL] [Abstract][Full Text] [Related]
16. Computer assisted evaluation of plate osteosynthesis of diaphyseal femur fracture considering interfragmentary movement: a finite element study. Wittkowske C; Raith S; Eder M; Volf A; Kirschke JS; König B; Ihle C; Machens HG; Döbele S; Kovacs L Biomed Tech (Berl); 2017 May; 62(3):245-255. PubMed ID: 27574854 [TBL] [Abstract][Full Text] [Related]
17. Dual small fragment plating improves screw-to-screw load sharing for mid-diaphyseal humeral fracture fixation: a finite element study. Kosmopoulos V; Luedke C; Nana AD Technol Health Care; 2015; 23(1):83-92. PubMed ID: 25408282 [TBL] [Abstract][Full Text] [Related]
18. The optimal design of 3D-printed lattice bone plate by considering fracture healing mechanism. Xu S; Ding X; Xiong M; Duan P; Zhang H; Li Z Int J Numer Method Biomed Eng; 2023 Mar; 39(3):e3682. PubMed ID: 36625630 [TBL] [Abstract][Full Text] [Related]
19. The biomechanics of plate repair of periprosthetic femur fractures near the tip of a total hip implant: the effect of cable-screw position. Dubov A; Kim SY; Shah S; Schemitsch EH; Zdero R; Bougherara H Proc Inst Mech Eng H; 2011 Sep; 225(9):857-65. PubMed ID: 22070023 [TBL] [Abstract][Full Text] [Related]
20. Biomechanics of bone-fracture fixation by stiffness-graded plates in comparison with stainless-steel plates. Ganesh VK; Ramakrishna K; Ghista DN Biomed Eng Online; 2005 Jul; 4():46. PubMed ID: 16045807 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]