These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
181 related articles for article (PubMed ID: 29102274)
1. Prediction of ground reaction forces for Parkinson's disease patients using a kinect-driven musculoskeletal gait analysis model. Eltoukhy M; Kuenze C; Andersen MS; Oh J; Signorile J Med Eng Phys; 2017 Dec; 50():75-82. PubMed ID: 29102274 [TBL] [Abstract][Full Text] [Related]
2. Comparison of predicted kinetic variables between Parkinson's disease patients and healthy age-matched control using a depth sensor-driven full-body musculoskeletal model. Oh J; Eltoukhy M; Kuenze C; Andersen MS; Signorile JF Gait Posture; 2020 Feb; 76():151-156. PubMed ID: 31862662 [TBL] [Abstract][Full Text] [Related]
3. Microsoft Kinect can distinguish differences in over-ground gait between older persons with and without Parkinson's disease. Eltoukhy M; Kuenze C; Oh J; Jacopetti M; Wooten S; Signorile J Med Eng Phys; 2017 Jun; 44():1-7. PubMed ID: 28408157 [TBL] [Abstract][Full Text] [Related]
4. Ground reaction force and joint moment estimation during gait using an Azure Kinect-driven musculoskeletal modeling approach. Ripic Z; Kuenze C; Andersen MS; Theodorakos I; Signorile J; Eltoukhy M Gait Posture; 2022 Jun; 95():49-55. PubMed ID: 35428024 [TBL] [Abstract][Full Text] [Related]
6. Validity of the Microsoft Kinect Oh J; Kuenze C; Jacopetti M; Signorile JF; Eltoukhy M Med Eng Phys; 2018 Oct; 60():70-76. PubMed ID: 30097314 [TBL] [Abstract][Full Text] [Related]
7. Gait assessment using the Microsoft Xbox One Kinect: Concurrent validity and inter-day reliability of spatiotemporal and kinematic variables. Mentiplay BF; Perraton LG; Bower KJ; Pua YH; McGaw R; Heywood S; Clark RA J Biomech; 2015 Jul; 48(10):2166-70. PubMed ID: 26065332 [TBL] [Abstract][Full Text] [Related]
8. [Lower limb joint contact forces and ground reaction forces analysis based on Azure Kinect motion capture]. Peng Y; Wang L; Chen Z; Dang X; Chen F; Li G Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2024 Aug; 41(4):751-757. PubMed ID: 39218601 [TBL] [Abstract][Full Text] [Related]
9. Prediction of gait kinetics using Markerless-driven musculoskeletal modeling. Ripic Z; Theodorakos I; Andersen MS; Signorile JF; Best TM; Jacobs KA; Eltoukhy M J Biomech; 2023 Aug; 157():111712. PubMed ID: 37421911 [TBL] [Abstract][Full Text] [Related]
10. Prediction of ground reaction forces during gait based on kinematics and a neural network model. Oh SE; Choi A; Mun JH J Biomech; 2013 Sep; 46(14):2372-80. PubMed ID: 23962528 [TBL] [Abstract][Full Text] [Related]
11. Validity of time series kinematical data as measured by a markerless motion capture system on a flatland for gait assessment. Tanaka R; Takimoto H; Yamasaki T; Higashi A J Biomech; 2018 Apr; 71():281-285. PubMed ID: 29475751 [TBL] [Abstract][Full Text] [Related]
12. Acclimatization of force production during walking in persons with Parkinson's disease. Pappas MC; Baudendistel ST; Schmitt AC; Au KLK; Hass CJ J Biomech; 2023 Feb; 148():111477. PubMed ID: 36739723 [TBL] [Abstract][Full Text] [Related]
13. Estimation of ground reaction forces during stair climbing in patients with ACL reconstruction using a depth sensor-driven musculoskeletal model. Oh J; Kuenze C; Signorile JF; Andersen MS; Letter M; Best TM; Ripic Z; Emerson C; Eltoukhy M Gait Posture; 2021 Feb; 84():232-237. PubMed ID: 33383533 [TBL] [Abstract][Full Text] [Related]
14. Using Kinect to classify Parkinson's disease stages related to severity of gait impairment. Dranca L; de Abetxuko Ruiz de Mendarozketa L; Goñi A; Illarramendi A; Navalpotro Gomez I; Delgado Alvarado M; Rodríguez-Oroz MC BMC Bioinformatics; 2018 Dec; 19(1):471. PubMed ID: 30526473 [TBL] [Abstract][Full Text] [Related]
15. Automated analysis of gait and modified timed up and go using the Microsoft Kinect in people with Parkinson's disease: associations with physical outcome measures. Tan D; Pua YH; Balakrishnan S; Scully A; Bower KJ; Prakash KM; Tan EK; Chew JS; Poh E; Tan SB; Clark RA Med Biol Eng Comput; 2019 Feb; 57(2):369-377. PubMed ID: 30123947 [TBL] [Abstract][Full Text] [Related]
16. Motion tracking and gait feature estimation for recognising Parkinson's disease using MS Kinect. Ťupa O; Procházka A; Vyšata O; Schätz M; Mareš J; Vališ M; Mařík V Biomed Eng Online; 2015 Oct; 14():97. PubMed ID: 26499251 [TBL] [Abstract][Full Text] [Related]
17. Gait analysis with the Kinect v2: normative study with healthy individuals and comprehensive study of its sensitivity, validity, and reliability in individuals with stroke. Latorre J; Colomer C; Alcañiz M; Llorens R J Neuroeng Rehabil; 2019 Jul; 16(1):97. PubMed ID: 31349868 [TBL] [Abstract][Full Text] [Related]
18. Concurrent validity of the Microsoft Kinect for Windows v2 for measuring spatiotemporal gait parameters. Dolatabadi E; Taati B; Mihailidis A Med Eng Phys; 2016 Sep; 38(9):952-8. PubMed ID: 27387901 [TBL] [Abstract][Full Text] [Related]
19. Ground reaction force estimation using an insole-type pressure mat and joint kinematics during walking. Jung Y; Jung M; Lee K; Koo S J Biomech; 2014 Aug; 47(11):2693-9. PubMed ID: 24917473 [TBL] [Abstract][Full Text] [Related]
20. Stance phase kinematics and kinetics of horses trotting over poles. Clayton HM; Stubbs NC; Lavagnino M Equine Vet J; 2015 Jan; 47(1):113-8. PubMed ID: 24580416 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]