These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
181 related articles for article (PubMed ID: 29102274)
41. Estimation of unmeasured ground reaction force data based on the oscillatory characteristics of the center of mass during human walking. Ryu HX; Park S J Biomech; 2018 Apr; 71():135-143. PubMed ID: 29525240 [TBL] [Abstract][Full Text] [Related]
42. Development and Validation of a Portable and Inexpensive Tool to Measure the Drop Vertical Jump Using the Microsoft Kinect V2. Gray AD; Willis BW; Skubic M; Huo Z; Razu S; Sherman SL; Guess TM; Jahandar A; Gulbrandsen TR; Miller S; Siesener NJ Sports Health; 2017; 9(6):537-544. PubMed ID: 28846505 [TBL] [Abstract][Full Text] [Related]
43. [Ground reaction forces of the canine hindlimb: are there differences between gait on treadmill and force plate?]. Drüen S; Böddeker J; Nolte I; Wefstaedt P Berl Munch Tierarztl Wochenschr; 2010; 123(7-8):339-45. PubMed ID: 20690546 [TBL] [Abstract][Full Text] [Related]
44. Proposal of a Kinect(TM)-based system for gait assessment and rehabilitation in Parkinson's disease. Cancela J; Arredondo MT; Hurtado O Annu Int Conf IEEE Eng Med Biol Soc; 2014; 2014():4519-22. PubMed ID: 25570996 [TBL] [Abstract][Full Text] [Related]
45. Evaluation of the Pose Tracking Performance of the Azure Kinect and Kinect v2 for Gait Analysis in Comparison with a Gold Standard: A Pilot Study. Albert JA; Owolabi V; Gebel A; Brahms CM; Granacher U; Arnrich B Sensors (Basel); 2020 Sep; 20(18):. PubMed ID: 32911651 [TBL] [Abstract][Full Text] [Related]
46. Ground reaction forces of elite dressage horses in collected trot and passage. Clayton HM; Schamhardt HC; Hobbs SJ Vet J; 2017 Mar; 221():30-33. PubMed ID: 28283077 [TBL] [Abstract][Full Text] [Related]
47. Validity of the Kinect for Gait Assessment: A Focused Review. Springer S; Yogev Seligmann G Sensors (Basel); 2016 Feb; 16(2):194. PubMed ID: 26861323 [TBL] [Abstract][Full Text] [Related]
48. Amputee Locomotion: Ground Reaction Forces During Submaximal Running With Running-Specific Prostheses. Baum BS; Hobara H; Kim YH; Shim JK J Appl Biomech; 2016 Jun; 32(3):287-94. PubMed ID: 26957365 [TBL] [Abstract][Full Text] [Related]
49. Effect of walking velocity on forelimb kinematics and kinetics. Khumsap S; Clayton HM; Lanovaz JL; Bouchey M Equine Vet J Suppl; 2002 Sep; (34):325-9. PubMed ID: 12405709 [TBL] [Abstract][Full Text] [Related]
50. Prediction of Three-Directional Ground Reaction Forces during Walking Using a Shoe Sole Sensor System and Machine Learning. Yamaguchi T; Takahashi Y; Sasaki Y Sensors (Basel); 2023 Nov; 23(21):. PubMed ID: 37960684 [TBL] [Abstract][Full Text] [Related]
51. Prediction of ground reaction forces and moments during walking in children with cerebral palsy. Kloeckner J; Visscher RMS; Taylor WR; Viehweger E; De Pieri E Front Hum Neurosci; 2023; 17():1127613. PubMed ID: 36968787 [TBL] [Abstract][Full Text] [Related]
52. Quantitative gait analysis in Parkinson's disease: comparison with a healthy control group. Sofuwa O; Nieuwboer A; Desloovere K; Willems AM; Chavret F; Jonkers I Arch Phys Med Rehabil; 2005 May; 86(5):1007-13. PubMed ID: 15895349 [TBL] [Abstract][Full Text] [Related]
53. Evaluation of Arm Swing Features and Asymmetry during Gait in Parkinson's Disease Using the Azure Kinect Sensor. Ferraris C; Amprimo G; Masi G; Vismara L; Cremascoli R; Sinagra S; Pettiti G; Mauro A; Priano L Sensors (Basel); 2022 Aug; 22(16):. PubMed ID: 36016043 [TBL] [Abstract][Full Text] [Related]
54. Parkinson's disease classification using gait analysis via deterministic learning. Zeng W; Liu F; Wang Q; Wang Y; Ma L; Zhang Y Neurosci Lett; 2016 Oct; 633():268-278. PubMed ID: 27693437 [TBL] [Abstract][Full Text] [Related]
55. Vertical ground reaction force marker for Parkinson's disease. Alam MN; Garg A; Munia TTK; Fazel-Rezai R; Tavakolian K PLoS One; 2017; 12(5):e0175951. PubMed ID: 28493868 [TBL] [Abstract][Full Text] [Related]
56. The required coefficient of friction in Parkinson's disease: people with freezing of gait. Rozin Kleiner AF; Cubillos DM; Pinto C; Salazar AP; Marchese RR; Barros RML; Galli M; Pagnussat AS Funct Neurol; 2018; 33(3):137-142. PubMed ID: 30457966 [TBL] [Abstract][Full Text] [Related]
57. Musculoskeletal model-based inverse dynamic analysis under ambulatory conditions using inertial motion capture. Karatsidis A; Jung M; Schepers HM; Bellusci G; de Zee M; Veltink PH; Andersen MS Med Eng Phys; 2019 Mar; 65():68-77. PubMed ID: 30737118 [TBL] [Abstract][Full Text] [Related]
58. Is the Assessment of 5 Meters of Gait with a Single Body-Fixed-Sensor Enough to Recognize Idiopathic Parkinson's Disease-Associated Gait? Micó-Amigo ME; Kingma I; Faber GS; Kunikoshi A; van Uem JMT; van Lummel RC; Maetzler W; van Dieën JH Ann Biomed Eng; 2017 May; 45(5):1266-1278. PubMed ID: 28108943 [TBL] [Abstract][Full Text] [Related]
59. Force plate analysis of the walking gait in healthy dogs. Budsberg SC; Verstraete MC; Soutas-Little RW Am J Vet Res; 1987 Jun; 48(6):915-8. PubMed ID: 3605807 [TBL] [Abstract][Full Text] [Related]
60. Reliability and comparison of Kinect-based methods for estimating spatiotemporal gait parameters of healthy and post-stroke individuals. Latorre J; Llorens R; Colomer C; Alcañiz M J Biomech; 2018 Apr; 72():268-273. PubMed ID: 29567306 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]