These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

195 related articles for article (PubMed ID: 29102396)

  • 41. Voltage imaging in vivo.
    Vogt N
    Nat Methods; 2019 Jul; 16(7):573. PubMed ID: 31249409
    [No Abstract]   [Full Text] [Related]  

  • 42. NoRMCorre: An online algorithm for piecewise rigid motion correction of calcium imaging data.
    Pnevmatikakis EA; Giovannucci A
    J Neurosci Methods; 2017 Nov; 291():83-94. PubMed ID: 28782629
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Biophysical Parameters of GEVIs: Considerations for Imaging Voltage.
    Rhee JK; Leong LM; Mukim MSI; Kang BE; Lee S; Bilbao-Broch L; Baker BJ
    Biophys J; 2020 Jul; 119(1):1-8. PubMed ID: 32521239
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Optimized temporally deconvolved Ca²⁺ imaging allows identification of spatiotemporal activity patterns of CA1 hippocampal ensembles.
    Pfeiffer T; Draguhn A; Reichinnek S; Both M
    Neuroimage; 2014 Jul; 94():239-249. PubMed ID: 24650598
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Bayesian methods for event analysis of intracellular currents.
    Merel J; Shababo B; Naka A; Adesnik H; Paninski L
    J Neurosci Methods; 2016 Aug; 269():21-32. PubMed ID: 27208694
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Coherent slow cortical potentials reveal a superior localization of resting-state functional connectivity using voltage-sensitive dye imaging.
    Li B; Liu R; Huang Q; Lu J; Luo Q; Li P
    Neuroimage; 2014 May; 91():162-8. PubMed ID: 24434676
    [TBL] [Abstract][Full Text] [Related]  

  • 47. [Fast and aimed delivery of voltage-sensitive dyes to mammalian brain slices by biolistic techniques].
    Aseev NA; Nikitin ES; Roshchin MV; Ierusalimskiĭ VN; Balaban PM
    Zh Vyssh Nerv Deiat Im I P Pavlova; 2012; 62(1):100-7. PubMed ID: 22567991
    [TBL] [Abstract][Full Text] [Related]  

  • 48. In Vivo Voltage-Sensitive Dye Imaging of Mammalian Cortex Using "Blue" Dyes.
    Baker B; Gao X; Wolff BS; Jin L; Cohen LB; Bleau CX; Wu JY
    Cold Spring Harb Protoc; 2015 Nov; 2015(11):1000-2. PubMed ID: 26527769
    [TBL] [Abstract][Full Text] [Related]  

  • 49. An evaluation of in vivo voltage-sensitive dyes: pharmacological side effects and signal-to-noise ratios after effective removal of brain-pulsation artifacts.
    Grandy TH; Greenfield SA; Devonshire IM
    J Neurophysiol; 2012 Dec; 108(11):2931-45. PubMed ID: 22972958
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Monitoring Population Membrane Potential Signals from Neocortex.
    Liang J; Xu W; Geng X; Wu JY
    Adv Exp Med Biol; 2015; 859():171-96. PubMed ID: 26238053
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Electromechanical optical mapping.
    Christoph J; Schröder-Schetelig J; Luther S
    Prog Biophys Mol Biol; 2017 Nov; 130(Pt B):150-169. PubMed ID: 28947080
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Linear model decomposition for voltage-sensitive dye imaging signals: application in awake behaving monkey.
    Reynaud A; Takerkart S; Masson GS; Chavane F
    Neuroimage; 2011 Jan; 54(2):1196-210. PubMed ID: 20800686
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Wide-field and two-photon imaging of brain activity with voltage- and calcium-sensitive dyes.
    Homma R; Baker BJ; Jin L; Garaschuk O; Konnerth A; Cohen LB; Bleau CX; Canepari M; Djurisic M; Zecevic D
    Methods Mol Biol; 2009; 489():43-79. PubMed ID: 18839087
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Imaging calcium and redox signals using genetically encoded fluorescent indicators.
    Gibhardt CS; Zimmermann KM; Zhang X; Belousov VV; Bogeski I
    Cell Calcium; 2016 Aug; 60(2):55-64. PubMed ID: 27142890
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Synchronization analysis of voltage-sensitive dye imaging during focal seizures in the rat neocortex.
    Takeshita D; Bahar S
    Chaos; 2011 Dec; 21(4):047506. PubMed ID: 22225380
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Response reliability observed with voltage-sensitive dye imaging of cortical layer 2/3: the probability of activation hypothesis.
    Gollnick CA; Millard DC; Ortiz AD; Bellamkonda RV; Stanley GB
    J Neurophysiol; 2016 Jun; 115(5):2456-69. PubMed ID: 26864758
    [TBL] [Abstract][Full Text] [Related]  

  • 57. New technologies.
    Schuman E; Zhuang X
    Curr Opin Neurobiol; 2010 Oct; 20(5):608-9. PubMed ID: 20832287
    [No Abstract]   [Full Text] [Related]  

  • 58. Optical voltage imaging in neurons: moving from technology development to practical tool.
    Knöpfel T; Song C
    Nat Rev Neurosci; 2019 Dec; 20(12):719-727. PubMed ID: 31705060
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Electrically-evoked oscillating calcium transients in mono- and co-cultures of iPSC glia and sensory neurons.
    Lawson J; LaVancher E; DeAlmeida M; Black BJ
    Front Cell Neurosci; 2023; 17():1094070. PubMed ID: 37006467
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Emerging Diamond Quantum Sensing in Bio-Membranes.
    Tan Y; Hu X; Hou Y; Chu Z
    Membranes (Basel); 2022 Sep; 12(10):. PubMed ID: 36295716
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.