These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
93 related articles for article (PubMed ID: 29102901)
1. Transcriptome dynamics provide insights into long-term salinity stress tolerance in Triticum aestivum cv. Kharchia Local. Mahajan MM; Goyal E; Singh AK; Gaikwad K; Kanika K Plant Physiol Biochem; 2017 Dec; 121():128-139. PubMed ID: 29102901 [TBL] [Abstract][Full Text] [Related]
2. Transcriptome profiling of the salt-stress response in Triticum aestivum cv. Kharchia Local. Goyal E; Amit SK; Singh RS; Mahato AK; Chand S; Kanika K Sci Rep; 2016 Jun; 6():27752. PubMed ID: 27293111 [TBL] [Abstract][Full Text] [Related]
3. Upregulation of genes encoding plastidic isoforms of antioxidant enzymes and osmolyte synthesis impart tissue tolerance to salinity stress in bread wheat. Sathee L; Sairam RK; Chinnusamy V; Jha SK; Singh D Physiol Mol Biol Plants; 2022 Sep; 28(9):1639-1655. PubMed ID: 36387974 [TBL] [Abstract][Full Text] [Related]
4. Transcriptome Profiling of Beach Morning Glory (Ipomoea imperati) under Salinity and Its Comparative Analysis with Sweetpotato. Solis J; Baisakh N; Brandt SR; Villordon A; La Bonte D PLoS One; 2016; 11(2):e0147398. PubMed ID: 26848754 [TBL] [Abstract][Full Text] [Related]
5. Comparison of Leaf Sheath Transcriptome Profiles with Physiological Traits of Bread Wheat Cultivars under Salinity Stress. Takahashi F; Tilbrook J; Trittermann C; Berger B; Roy SJ; Seki M; Shinozaki K; Tester M PLoS One; 2015; 10(8):e0133322. PubMed ID: 26244554 [TBL] [Abstract][Full Text] [Related]
6. Harnessing Next Generation Sequencing in Climate Change: RNA-Seq Analysis of Heat Stress-Responsive Genes in Wheat (Triticum aestivum L.). Kumar RR; Goswami S; Sharma SK; Kala YK; Rai GK; Mishra DC; Grover M; Singh GP; Pathak H; Rai A; Chinnusamy V; Rai RD OMICS; 2015 Oct; 19(10):632-47. PubMed ID: 26406536 [TBL] [Abstract][Full Text] [Related]
7. De novo assembly and comparative analysis of the transcriptome of embryogenic callus formation in bread wheat (Triticum aestivum L.). Chu Z; Chen J; Sun J; Dong Z; Yang X; Wang Y; Xu H; Zhang X; Chen F; Cui D BMC Plant Biol; 2017 Dec; 17(1):244. PubMed ID: 29258440 [TBL] [Abstract][Full Text] [Related]
8. Low pH stress responsive transcriptome of seedling roots in wheat (Triticum aestivum L.). Hu H; He J; Zhao J; Ou X; Li H; Ru Z Genes Genomics; 2018 Nov; 40(11):1199-1211. PubMed ID: 30315523 [TBL] [Abstract][Full Text] [Related]
9. Full-length transcriptome sequences of ephemeral plant Arabidopsis pumila provides insight into gene expression dynamics during continuous salt stress. Yang L; Jin Y; Huang W; Sun Q; Liu F; Huang X BMC Genomics; 2018 Sep; 19(1):717. PubMed ID: 30261913 [TBL] [Abstract][Full Text] [Related]
10. Transcriptome analysis of grapevine under salinity and identification of key genes responsible for salt tolerance. Das P; Majumder AL Funct Integr Genomics; 2019 Jan; 19(1):61-73. PubMed ID: 30046943 [TBL] [Abstract][Full Text] [Related]
11. Proteomic profiling sheds light on alkali tolerance of common wheat (Triticum aestivum L.). Han L; Xiao C; Xiao B; Wang M; Liu J; Bhanbhro N; Khan A; Wang H; Wang H; Yang C Plant Physiol Biochem; 2019 May; 138():58-64. PubMed ID: 30852238 [TBL] [Abstract][Full Text] [Related]
12. Expression partitioning of homeologs and tandem duplications contribute to salt tolerance in wheat (Triticum aestivum L.). Zhang Y; Liu Z; Khan AA; Lin Q; Han Y; Mu P; Liu Y; Zhang H; Li L; Meng X; Ni Z; Xin M Sci Rep; 2016 Feb; 6():21476. PubMed ID: 26892368 [TBL] [Abstract][Full Text] [Related]
13. De Novo Assembly and Characterization of Stress Transcriptome in a Salinity-Tolerant Variety CS52 of Brassica juncea. Sharma R; Mishra M; Gupta B; Parsania C; Singla-Pareek SL; Pareek A PLoS One; 2015; 10(5):e0126783. PubMed ID: 25970274 [TBL] [Abstract][Full Text] [Related]
14. Transcriptome analysis of the Taxodium 'Zhongshanshan 405' roots in response to salinity stress. Yu C; Xu S; Yin Y Plant Physiol Biochem; 2016 Mar; 100():156-165. PubMed ID: 26828407 [TBL] [Abstract][Full Text] [Related]
15. Wheat stem reserves and salinity tolerance: molecular dissection of fructan biosynthesis and remobilization to grains. Sharbatkhari M; Shobbar ZS; Galeshi S; Nakhoda B Planta; 2016 Jul; 244(1):191-202. PubMed ID: 27016249 [TBL] [Abstract][Full Text] [Related]
16. Transcriptome Analysis of Ceriops tagal in Saline Environments Using RNA-Sequencing. Xiao X; Hong Y; Xia W; Feng S; Zhou X; Fu X; Zang J; Xiao Y; Niu X; Li C; Chen Y PLoS One; 2016; 11(12):e0167551. PubMed ID: 27936168 [TBL] [Abstract][Full Text] [Related]
17. Profiling of mitochondrial transcriptome in germinating wheat embryos and seedlings subjected to cold, salinity and osmotic stresses. Naydenov NG; Khanam S; Siniauskaya M; Nakamura C Genes Genet Syst; 2010 Feb; 85(1):31-42. PubMed ID: 20410663 [TBL] [Abstract][Full Text] [Related]
18. Exploring the heat-responsive chaperones and microsatellite markers associated with terminal heat stress tolerance in developing wheat. Kumar RR; Goswami S; Shamim M; Dubey K; Singh K; Singh S; Kala YK; Niraj RRK; Sakhrey A; Singh GP; Grover M; Singh B; Rai GK; Rai AK; Chinnusamy V; Praveen S Funct Integr Genomics; 2017 Nov; 17(6):621-640. PubMed ID: 28573536 [TBL] [Abstract][Full Text] [Related]
19. Genome-wide characterization of JASMONATE-ZIM DOMAIN transcription repressors in wheat (Triticum aestivum L.). Wang Y; Qiao L; Bai J; Wang P; Duan W; Yuan S; Yuan G; Zhang F; Zhang L; Zhao C BMC Genomics; 2017 Feb; 18(1):152. PubMed ID: 28193162 [TBL] [Abstract][Full Text] [Related]
20. A genome-wide transcriptome map of pistachio (Pistacia vera L.) provides novel insights into salinity-related genes and marker discovery. Moazzzam Jazi M; Seyedi SM; Ebrahimie E; Ebrahimi M; De Moro G; Botanga C BMC Genomics; 2017 Aug; 18(1):627. PubMed ID: 28814265 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]