BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

112 related articles for article (PubMed ID: 29102905)

  • 1. Potential ecotoxicity of metals leached from antifouling paint particles under different salinities.
    Soroldoni S; Martins SE; Castro IB; Pinho GLL
    Ecotoxicol Environ Saf; 2018 Feb; 148():447-452. PubMed ID: 29102905
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Are antifouling paint particles a continuous source of toxic chemicals to the marine environment?
    Soroldoni S; Abreu F; Castro ÍB; Duarte FA; Pinho GL
    J Hazard Mater; 2017 May; 330():76-82. PubMed ID: 28212512
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Antifouling paint particles cause toxicity to benthic organisms: Effects on two species with different feeding modes.
    Soroldoni S; Vieira da Silva S; Castro ÍB; de Martinez Gaspar Martins C; Leães Pinho GL
    Chemosphere; 2020 Jan; 238():124610. PubMed ID: 31450112
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The toxicity of metal mixtures to the estuarine mysid Neomysis integer (Crustacea: Mysidacea) under changing salinity.
    Verslycke T; Vangheluwe M; Heijerick D; De Schamphelaere K; Van Sprang P; Janssen CR
    Aquat Toxicol; 2003 Aug; 64(3):307-15. PubMed ID: 12842594
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Comparison of toxicity and release rates of Cu and Zn from anti-fouling paints leached in natural and artificial brackish seawater.
    Ytreberg E; Karlsson J; Eklund B
    Sci Total Environ; 2010 May; 408(12):2459-66. PubMed ID: 20347476
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Acute copper toxicity in the euryhaline copepod Acartia tonsa: implications for the development of an estuarine and marine biotic ligand model.
    Pinho GL; Bianchini A
    Environ Toxicol Chem; 2010 Aug; 29(8):1834-40. PubMed ID: 20821639
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Acute waterborne copper toxicity to the euryhaline copepod Acartia tonsa at different salinities: influence of natural freshwater and marine dissolved organic matter.
    Monteiro SC; Pinho GL; Hoffmann K; Barcarolli IF; Bianchini A
    Environ Toxicol Chem; 2013 Jun; 32(6):1412-9. PubMed ID: 23427042
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effect of salinity on acute copper and zinc toxicity to Tigriopus japonicus: the difference between metal ions and nanoparticles.
    Park J; Kim S; Yoo J; Lee JS; Park JW; Jung J
    Mar Pollut Bull; 2014 Aug; 85(2):526-31. PubMed ID: 24837323
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Chronic copper toxicity in the estuarine copepod Acartia tonsa at different salinities.
    Lauer MM; Bianchini A
    Environ Toxicol Chem; 2010 Oct; 29(10):2297-303. PubMed ID: 20872694
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Antifouling paint particles: Sources, occurrence, composition and dynamics.
    Soroldoni S; Castro ÍB; Abreu F; Duarte FA; Choueri RB; Möller OO; Fillmann G; Pinho GLL
    Water Res; 2018 Jun; 137():47-56. PubMed ID: 29525427
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effect of 2,4-dihydroxybenzophenone (BP1) on early life-stage development of the marine copepod Acartia tonsa at different temperatures and salinities.
    Kusk KO; Avdolli M; Wollenberger L
    Environ Toxicol Chem; 2011 Apr; 30(4):959-66. PubMed ID: 21194178
    [TBL] [Abstract][Full Text] [Related]  

  • 12. In situ release rates of Cu and Zn from commercial antifouling paints at different salinities.
    Lagerström M; Lindgren JF; Holmqvist A; Dahlström M; Ytreberg E
    Mar Pollut Bull; 2018 Feb; 127():289-296. PubMed ID: 29475665
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effect of marine antifouling paint particles waste on survival of natural Bermuda copepod communities.
    Molino C; Angeletti D; Oldham VE; Goodbody-Gringley G; Buck KN
    Mar Pollut Bull; 2019 Dec; 149():110492. PubMed ID: 31437615
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Influence of environmental conditions on the toxicokinetics of cadmium in the marine copepod Acartia tonsa.
    Pavlaki MD; Morgado RG; van Gestel CAM; Calado R; Soares AMVM; Loureiro S
    Ecotoxicol Environ Saf; 2017 Nov; 145():142-149. PubMed ID: 28732297
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Physiological effects of copper in the euryhaline copepod Acartia tonsa: waterborne versus waterborne plus dietborne exposure.
    Pinho GL; Pedroso MS; Rodrigues SC; Souza SS; Bianchini A
    Aquat Toxicol; 2007 Aug; 84(1):62-70. PubMed ID: 17659357
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Toxicity of silver, zinc, copper, and nickel to the copepod Acartia tonsa exposed via a phytoplankton diet.
    Bielmyer GK; Grosell M; Brixti KV
    Environ Sci Technol; 2006 Mar; 40(6):2063-8. PubMed ID: 16570637
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Antifouling paint particles in intertidal estuarine sediments from southwest England and their ingestion by the harbour ragworm, Hediste diversicolor.
    Muller-Karanassos C; Turner A; Arundel W; Vance T; Lindeque PK; Cole M
    Environ Pollut; 2019 Jun; 249():163-170. PubMed ID: 30884395
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A novel XRF method to measure environmental release of copper and zinc from antifouling paints.
    Ytreberg E; Lagerström M; Holmqvist A; Eklund B; Elwing H; Dahlström M; Dahl P; Dahlström M
    Environ Pollut; 2017 Jun; 225():490-496. PubMed ID: 28341326
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Toxicity of antifouling biocides to the intertidal harpacticoid copepod Tigriopus japonicus (Crustacea, Copepoda): effects of temperature and salinity.
    Kwok KW; Leung KM
    Mar Pollut Bull; 2005; 51(8-12):830-7. PubMed ID: 16291193
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Acute silver toxicity in the euryhaline copepod Acartia tonsa: influence of salinity and food.
    Pedroso MS; Bersano JG; Bianchini A
    Environ Toxicol Chem; 2007 Oct; 26(10):2158-65. PubMed ID: 17867869
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.