BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

206 related articles for article (PubMed ID: 29103485)

  • 21. Osteoconductive 3D porous composite scaffold from regenerated cellulose and cuttlebone-derived hydroxyapatite.
    Palaveniene A; Tamburaci S; Kimna C; Glambaite K; Baniukaitiene O; Tihminlioğlu F; Liesiene J
    J Biomater Appl; 2019 Jan; 33(6):876-890. PubMed ID: 30451067
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Surface biofunctionalization of three-dimensional porous poly(lactic acid) scaffold using chitosan/OGP coating for bone tissue engineering.
    Zeng S; Ye J; Cui Z; Si J; Wang Q; Wang X; Peng K; Chen W
    Mater Sci Eng C Mater Biol Appl; 2017 Aug; 77():92-101. PubMed ID: 28532111
    [TBL] [Abstract][Full Text] [Related]  

  • 23. RGD-conjugated copolymer incorporated into composite of poly(lactide-co-glycotide) and poly(L-lactide)-grafted nanohydroxyapatite for bone tissue engineering.
    Zhang P; Wu H; Wu H; Lù Z; Deng C; Hong Z; Jing X; Chen X
    Biomacromolecules; 2011 Jul; 12(7):2667-80. PubMed ID: 21604718
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Novel porous hydroxyapatite prepared by combining H2O2 foaming with PU sponge and modified with PLGA and bioactive glass.
    Huang X; Miao X
    J Biomater Appl; 2007 Apr; 21(4):351-74. PubMed ID: 16543281
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Fabrication, characterization, and in vitro evaluation of poly(lactic acid glycolic acid)/nano-hydroxyapatite composite microsphere-based scaffolds for bone tissue engineering in rotating bioreactors.
    Lv Q; Nair L; Laurencin CT
    J Biomed Mater Res A; 2009 Dec; 91(3):679-91. PubMed ID: 19030184
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Preparation and characterization of (PCL-crosslinked-PEG)/hydroxyapatite as bone tissue engineering scaffolds.
    Koupaei N; Karkhaneh A; Daliri Joupari M
    J Biomed Mater Res A; 2015 Dec; 103(12):3919-26. PubMed ID: 26015080
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Aligned porous barium titanate/hydroxyapatite composites with high piezoelectric coefficients for bone tissue engineering.
    Zhang Y; Chen L; Zeng J; Zhou K; Zhang D
    Mater Sci Eng C Mater Biol Appl; 2014 Jun; 39():143-9. PubMed ID: 24863210
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Pullulan-based composite scaffolds for bone tissue engineering: Improved osteoconductivity by pore wall mineralization.
    Amrita ; Arora A; Sharma P; Katti DS
    Carbohydr Polym; 2015 Jun; 123():180-9. PubMed ID: 25843850
    [TBL] [Abstract][Full Text] [Related]  

  • 29. In vitro and animal study of novel nano-hydroxyapatite/poly(epsilon-caprolactone) composite scaffolds fabricated by layer manufacturing process.
    Heo SJ; Kim SE; Wei J; Kim DH; Hyun YT; Yun HS; Kim HK; Yoon TR; Kim SH; Park SA; Shin JW; Shin JW
    Tissue Eng Part A; 2009 May; 15(5):977-89. PubMed ID: 18803480
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Mechanical properties and shape memory effect of 3D-printed PLA-based porous scaffolds.
    Senatov FS; Niaza KV; Zadorozhnyy MY; Maksimkin AV; Kaloshkin SD; Estrin YZ
    J Mech Behav Biomed Mater; 2016 Apr; 57():139-48. PubMed ID: 26710259
    [TBL] [Abstract][Full Text] [Related]  

  • 31. The role of titanium dioxide on the morphology, microstructure, and bioactivity of grafted cellulose/hydroxyapatite nanocomposites for a potential application in bone repair.
    Saber-Samandari S; Yekta H; Ahmadi S; Alamara K
    Int J Biol Macromol; 2018 Jan; 106():481-488. PubMed ID: 28797809
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Mechanical, thermal and morphological characterisation of 3D porous Pennisetum purpureum/PLA biocomposites scaffold.
    Revati R; Abdul Majid MS; Ridzuan MJM; Normahira M; Mohd Nasir NF; Rahman Y MN; Gibson AG
    Mater Sci Eng C Mater Biol Appl; 2017 Jun; 75():752-759. PubMed ID: 28415525
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Preparation, characterization and evaluation of cellulose nanocrystal/poly(lactic acid) in situ nanocomposite scaffolds for tissue engineering.
    Luo W; Cheng L; Yuan C; Wu Z; Yuan G; Hou M; Chen JY; Luo C; Li W
    Int J Biol Macromol; 2019 Aug; 134():469-479. PubMed ID: 31078594
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Bio-scaffolds produced from irradiated squid pen and crab chitosan with hydroxyapatite/β-tricalcium phosphate for bone-tissue engineering.
    Shavandi A; Bekhit AE; Sun Z; Ali MA
    Int J Biol Macromol; 2016 Dec; 93(Pt B):1446-1456. PubMed ID: 27126171
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Electrospinning and evaluation of PHBV-based tissue engineering scaffolds with different fibre diameters, surface topography and compositions.
    Tong HW; Wang M; Lu WW
    J Biomater Sci Polym Ed; 2012; 23(6):779-806. PubMed ID: 21418747
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Effect of different hydroxyapatite incorporation methods on the structural and biological properties of porous collagen scaffolds for bone repair.
    Ryan AJ; Gleeson JP; Matsiko A; Thompson EM; O'Brien FJ
    J Anat; 2015 Dec; 227(6):732-45. PubMed ID: 25409684
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Biomimetic composite scaffolds containing bioceramics and collagen/gelatin for bone tissue engineering - A mini review.
    Kuttappan S; Mathew D; Nair MB
    Int J Biol Macromol; 2016 Dec; 93(Pt B):1390-1401. PubMed ID: 27316767
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Polycaprolactone/hydroxyapatite composite scaffolds: preparation, characterization, and in vitro and in vivo biological responses of human primary bone cells.
    Chuenjitkuntaworn B; Inrung W; Damrongsri D; Mekaapiruk K; Supaphol P; Pavasant P
    J Biomed Mater Res A; 2010 Jul; 94(1):241-51. PubMed ID: 20166220
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Modification and cytocompatibility of biocomposited porous PLLA/HA-microspheres scaffolds.
    Xiao G; Yin H; Xu W; Lu Y
    J Biomater Sci Polym Ed; 2016 Oct; 27(14):1462-75. PubMed ID: 27398630
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Preparation of PLGA scaffolds with graded pores by using a gelatin-microsphere template as porogen.
    Tang G; Zhang H; Zhao Y; Zhang Y; Li X; Yuan X
    J Biomater Sci Polym Ed; 2012; 23(17):2241-57. PubMed ID: 22137329
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.