BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

139 related articles for article (PubMed ID: 29103506)

  • 21. Comparison of the properties of cellulose nanocrystals and cellulose nanofibrils isolated from bacteria, tunicate, and wood processed using acid, enzymatic, mechanical, and oxidative methods.
    Sacui IA; Nieuwendaal RC; Burnett DJ; Stranick SJ; Jorfi M; Weder C; Foster EJ; Olsson RT; Gilman JW
    ACS Appl Mater Interfaces; 2014 May; 6(9):6127-38. PubMed ID: 24746103
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Extraction of cellulose nanofibrils from dry softwood pulp using high shear homogenization.
    Zhao J; Zhang W; Zhang X; Zhang X; Lu C; Deng Y
    Carbohydr Polym; 2013 Sep; 97(2):695-702. PubMed ID: 23911503
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Relationship between length and degree of polymerization of TEMPO-oxidized cellulose nanofibrils.
    Shinoda R; Saito T; Okita Y; Isogai A
    Biomacromolecules; 2012 Mar; 13(3):842-9. PubMed ID: 22276990
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Estimating the Strength of Single Chitin Nanofibrils via Sonication-Induced Fragmentation.
    Bamba Y; Ogawa Y; Saito T; Berglund LA; Isogai A
    Biomacromolecules; 2017 Dec; 18(12):4405-4410. PubMed ID: 29135235
    [TBL] [Abstract][Full Text] [Related]  

  • 25. A new 3D printing strategy by enhancing shear-induced alignment of gelled nanomaterial inks resulting in stronger and ductile cellulose films.
    Yang Y; Li D; Yan N; Guo F
    Carbohydr Polym; 2024 Sep; 340():122269. PubMed ID: 38858020
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Cellulose Nanofibrils-based Hydrogels for Biomedical Applications: Progresses and Challenges.
    Liu H; Liu K; Han X; Xie H; Si C; Liu W; Bae Y
    Curr Med Chem; 2020; 27(28):4622-4646. PubMed ID: 32124687
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Isolation and Rheological Characterization of Cellulose Nanofibrils (CNFs) from Coir Fibers in Comparison to Wood and Cotton.
    Yue D; Qian X
    Polymers (Basel); 2018 Mar; 10(3):. PubMed ID: 30966355
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Nanostructural Properties and Twist Periodicity of Cellulose Nanofibrils with Variable Charge Density.
    Arcari M; Zuccarella E; Axelrod R; Adamcik J; Sánchez-Ferrer A; Mezzenga R; Nyström G
    Biomacromolecules; 2019 Mar; 20(3):1288-1296. PubMed ID: 30673281
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Curaua and eucalyptus nanofibers films by continuous casting: Mechanical and thermal properties.
    Claro PIC; Corrêa AC; de Campos A; Rodrigues VB; Luchesi BR; Silva LE; Mattoso LHC; Marconcini JM
    Carbohydr Polym; 2018 Feb; 181():1093-1101. PubMed ID: 29253936
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Lignin-Containing Cellulose Nanofibrils from TEMPO-Mediated Oxidation of Date Palm Waste: Preparation, Characterization, and Reinforcing Potential.
    Najahi A; Tarrés Q; Mutjé P; Delgado-Aguilar M; Putaux JL; Boufi S
    Nanomaterials (Basel); 2022 Dec; 13(1):. PubMed ID: 36616036
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Using cellulose fibers to fabricate transparent paper by microfibrillation.
    Li Z; Liu W; Guan F; Li G; Song Z; Yu D; Wang H; Liu H
    Carbohydr Polym; 2019 Jun; 214():26-33. PubMed ID: 30925996
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Holocellulose Nanofibers of High Molar Mass and Small Diameter for High-Strength Nanopaper.
    Galland S; Berthold F; Prakobna K; Berglund LA
    Biomacromolecules; 2015 Aug; 16(8):2427-35. PubMed ID: 26151837
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Impact of TEMPO-oxidization strength on the properties of cellulose nanofibril reinforced polyvinyl acetate nanocomposites.
    Hamou KB; Kaddami H; Dufresne A; Boufi S; Magnin A; Erchiqui F
    Carbohydr Polym; 2018 Feb; 181():1061-1070. PubMed ID: 29253932
    [TBL] [Abstract][Full Text] [Related]  

  • 34. CNFs from twin screw extrusion and high pressure homogenization: A comparative study.
    Baati R; Mabrouk AB; Magnin A; Boufi S
    Carbohydr Polym; 2018 Sep; 195():321-328. PubMed ID: 29804983
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Impact of the Enzyme Charge on the Production and Morphological Features of Cellulose Nanofibrils.
    Henríquez-Gallegos S; Albornoz-Palma G; Andrade A; Soto C; Pereira M
    Polymers (Basel); 2021 Sep; 13(19):. PubMed ID: 34641054
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Sustainable valorization of paper mill sludge into cellulose nanofibrils and cellulose nanopaper.
    Du H; Parit M; Wu M; Che X; Wang Y; Zhang M; Wang R; Zhang X; Jiang Z; Li B
    J Hazard Mater; 2020 Dec; 400():123106. PubMed ID: 32580093
    [TBL] [Abstract][Full Text] [Related]  

  • 37. On the morphology of cellulose nanofibrils obtained by TEMPO-mediated oxidation and mechanical treatment.
    Gamelas JA; Pedrosa J; Lourenço AF; Mutjé P; González I; Chinga-Carrasco G; Singh G; Ferreira PJ
    Micron; 2015 May; 72():28-33. PubMed ID: 25768897
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Improved thermal stability of cellulose nanofibrils using low-concentration alkaline pretreatment.
    Lee H; Sundaram J; Zhu L; Zhao Y; Mani S
    Carbohydr Polym; 2018 Feb; 181():506-513. PubMed ID: 29254001
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Effects of pH on Nanofibrillation of TEMPO-Oxidized Paper Mulberry Bast Fibers.
    Park JY; Park CW; Han SY; Kwon GJ; Kim NH; Lee SH
    Polymers (Basel); 2019 Mar; 11(3):. PubMed ID: 30960398
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Reversible Surface Engineering of Cellulose Elementary Fibrils: From Ultralong Nanocelluloses to Advanced Cellulosic Materials.
    Zhou M; Chen D; Chen Q; Chen P; Song G; Chang C
    Adv Mater; 2024 May; 36(21):e2312220. PubMed ID: 38288877
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.