These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

125 related articles for article (PubMed ID: 29103897)

  • 1. Material analysis of Bottom ash from waste-to-energy plants.
    Šyc M; Krausová A; Kameníková P; Šomplák R; Pavlas M; Zach B; Pohořelý M; Svoboda K; Punčochář M
    Waste Manag; 2018 Mar; 73():360-366. PubMed ID: 29103897
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Quantification of the resource recovery potential of municipal solid waste incineration bottom ashes.
    Allegrini E; Maresca A; Olsson ME; Holtze MS; Boldrin A; Astrup TF
    Waste Manag; 2014 Sep; 34(9):1627-36. PubMed ID: 24889793
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Innovative treatment trains of bottom ash (BA) from municipal solid waste incineration (MSWI) in Germany.
    Holm O; Simon FG
    Waste Manag; 2017 Jan; 59():229-236. PubMed ID: 27625178
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Modelling of material recovery from waste incineration bottom ash.
    Huber F
    Waste Manag; 2020 Mar; 105():61-72. PubMed ID: 32028102
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Determination of metal-abundant high-density particles in municipal solid waste incineration bottom ash by a series of processes: Sieving, magnetic separation, air table sorting, and milling.
    Back S; Ueda K; Sakanakura H
    Waste Manag; 2020 Jul; 112():11-19. PubMed ID: 32480299
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effect of ferrous metal presence on lead leaching in municipal waste incineration bottom ashes.
    Oehmig WN; Roessler JG; Zhang J; Townsend TG
    J Hazard Mater; 2015; 283():500-6. PubMed ID: 25464288
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Characterisation of major component leaching and buffering capacity of RDF incineration and gasification bottom ash in relation to reuse or disposal scenarios.
    Rocca S; van Zomeren A; Costa G; Dijkstra JJ; Comans RN; Lombardi F
    Waste Manag; 2012 Apr; 32(4):759-68. PubMed ID: 22226920
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Solid residues from Italian municipal solid waste incinerators: A source for "critical" raw materials.
    Funari V; Braga R; Bokhari SN; Dinelli E; Meisel T
    Waste Manag; 2015 Nov; 45():206-16. PubMed ID: 25512234
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Experimental assessment of cement hydration and leaching characteristics for waste-to-energy bottom ash mixed with concrete.
    An J; Nam BH; Cho BH; Eun J
    J Air Waste Manag Assoc; 2021 Jul; 71(7):906-922. PubMed ID: 33818306
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Quantification of main and trace metal components in the fly ash of waste-to-energy plants located in Germany and Switzerland: An overview and comparison of concentration fluctuations within and between several plants with particular focus on valuable metals.
    Haberl J; Koralewska R; Schlumberger S; Schuster M
    Waste Manag; 2018 May; 75():361-371. PubMed ID: 29478958
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Metal recovery from incineration bottom ash: State-of-the-art and recent developments.
    Šyc M; Simon FG; Hykš J; Braga R; Biganzoli L; Costa G; Funari V; Grosso M
    J Hazard Mater; 2020 Jul; 393():122433. PubMed ID: 32143166
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Assessment of mobility and bioavailability of contaminants in MSW incineration ash with aquatic and terrestrial bioassays.
    Ribé V; Nehrenheim E; Odlare M
    Waste Manag; 2014 Oct; 34(10):1871-6. PubMed ID: 24502934
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Life cycle assessment of resource recovery from municipal solid waste incineration bottom ash.
    Allegrini E; Vadenbo C; Boldrin A; Astrup TF
    J Environ Manage; 2015 Mar; 151():132-43. PubMed ID: 25555136
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Complete determination of the material composition of municipal solid waste incineration bottom ash.
    Huber F; Blasenbauer D; Aschenbrenner P; Fellner J
    Waste Manag; 2020 Feb; 102():677-685. PubMed ID: 31790926
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Separation and characterization of magnetic fractions from waste-to-energy bottom ash with an emphasis on the leachability of heavy metals.
    Wei Y; Mei X; Shi D; Liu G; Li L; Shimaoka T
    Environ Sci Pollut Res Int; 2017 Jun; 24(17):14970-14979. PubMed ID: 28488148
    [TBL] [Abstract][Full Text] [Related]  

  • 16. To fractionate municipal solid waste incineration bottom ash: Key for utilisation?
    Sormunen LA; Rantsi R
    Waste Manag Res; 2015 Nov; 33(11):995-1004. PubMed ID: 26330401
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Construction of an interim storage field using recovered municipal solid waste incineration bottom ash: Field performance study.
    Sormunen LA; Kolisoja P
    Waste Manag; 2017 Jun; 64():107-116. PubMed ID: 28325702
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Waste to energy--key element for sustainable waste management.
    Brunner PH; Rechberger H
    Waste Manag; 2015 Mar; 37():3-12. PubMed ID: 24630214
    [TBL] [Abstract][Full Text] [Related]  

  • 19. LCA of management strategies for RDF incineration and gasification bottom ash based on experimental leaching data.
    Di Gianfilippo M; Costa G; Pantini S; Allegrini E; Lombardi F; Astrup TF
    Waste Manag; 2016 Jan; 47(Pt B):285-98. PubMed ID: 26095983
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Aluminium recovery from waste incineration bottom ash, and its oxidation level.
    Biganzoli L; Grosso M
    Waste Manag Res; 2013 Sep; 31(9):954-9. PubMed ID: 23831779
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.