These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

227 related articles for article (PubMed ID: 29104245)

  • 1. A Pattern Recognition Approach to Acoustic Emission Data Originating from Fatigue of Wind Turbine Blades.
    Tang J; Soua S; Mares C; Gan TH
    Sensors (Basel); 2017 Nov; 17(11):. PubMed ID: 29104245
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Acoustic-Signal-Based Damage Detection of Wind Turbine Blades-A Review.
    Ding S; Yang C; Zhang S
    Sensors (Basel); 2023 May; 23(11):. PubMed ID: 37299714
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Prediction of Fatigue Crack Growth in Gas Turbine Engine Blades Using Acoustic Emission.
    Zhang Z; Yang G; Hu K
    Sensors (Basel); 2018 Apr; 18(5):. PubMed ID: 29693556
    [TBL] [Abstract][Full Text] [Related]  

  • 4. π-FBG Fiber Optic Acoustic Emission Sensor for the Crack Detection of Wind Turbine Blades.
    Yan Q; Che X; Li S; Wang G; Liu X
    Sensors (Basel); 2023 Sep; 23(18):. PubMed ID: 37765878
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A data driven approach for condition monitoring of wind turbine blade using vibration signals through best-first tree algorithm and functional trees algorithm: A comparative study.
    Joshuva A; Sugumaran V
    ISA Trans; 2017 Mar; 67():160-172. PubMed ID: 28189258
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Numerical and Experimental Analysis of Horizontal-Axis Wind Turbine Blade Fatigue Life.
    Shah I; Khan A; Ali M; Shahab S; Aziz S; Noon MAA; Tipu JAK
    Materials (Basel); 2023 Jul; 16(13):. PubMed ID: 37445118
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Delamination Fracture Behavior of Unidirectional Carbon Reinforced Composites Applied to Wind Turbine Blades.
    Boyano A; Lopez-Guede JM; Torre-Tojal L; Fernandez-Gamiz U; Zulueta E; Mujika F
    Materials (Basel); 2021 Jan; 14(3):. PubMed ID: 33513957
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Visualization and analysis of vortex-turbine intersections in wind farms.
    Shafii S; Obermaier H; Linn R; Koo E; Hlawitschka M; Garth C; Hamann B; Joy KI
    IEEE Trans Vis Comput Graph; 2013 Sep; 19(9):1579-91. PubMed ID: 23846101
    [TBL] [Abstract][Full Text] [Related]  

  • 9. PSO-BP Neural Network-Based Strain Prediction of Wind Turbine Blades.
    Liu X; Liu Z; Liang Z; Zhu SP; Correia JAFO; De Jesus AMP
    Materials (Basel); 2019 Jun; 12(12):. PubMed ID: 31212753
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Tensile Damage Study of Wind Turbine Tower Material Q345 Based on an Acoustic Emission Method.
    Tang X; Liao L; Huang B; Li C
    Materials (Basel); 2021 Apr; 14(9):. PubMed ID: 33922082
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Occupational exposures to styrene vapor in a manufacturing plant for fiber-reinforced composite wind turbine blades.
    Hammond D; Garcia A; Feng HA
    Ann Occup Hyg; 2011 Jul; 55(6):591-600. PubMed ID: 21597049
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Moving Accelerometers to the Tip: Monitoring of Wind Turbine Blade Bending Using 3D Accelerometers and Model-Based Bending Shapes.
    Loss T; Bergmann A
    Sensors (Basel); 2020 Sep; 20(18):. PubMed ID: 32957685
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Root Causes and Mechanisms of Failure of Wind Turbine Blades: Overview.
    Mishnaevsky L
    Materials (Basel); 2022 Apr; 15(9):. PubMed ID: 35591294
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A Machine Vision Method for Identifying Blade Tip Clearance in Wind Turbines.
    Zhang L; Wei J
    Sensors (Basel); 2024 Sep; 24(18):. PubMed ID: 39338680
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The Use of Wind Turbine Blades to Build Road Noise Barriers as an Example of a Circular Economy Model.
    Broniewicz M; Halicka A; Buda-Ożóg L; Broniewicz F; Nykiel D; Jabłoński Ł
    Materials (Basel); 2024 Apr; 17(9):. PubMed ID: 38730855
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Analysis of the Effect of Fiber Orientation on Mechanical and Elastic Characteristics at Axial Stresses of GFRP Used in Wind Turbine Blades.
    Morăraș CI; Goanță V; Husaru D; Istrate B; Bârsănescu PD; Munteanu C
    Polymers (Basel); 2023 Feb; 15(4):. PubMed ID: 36850147
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Full-Scale Fatigue Testing of a Wind Turbine Blade in Flapwise Direction and Examining the Effect of Crack Propagation on the Blade Performance.
    Al-Khudairi O; Hadavinia H; Little C; Gillmore G; Greaves P; Dyer K
    Materials (Basel); 2017 Oct; 10(10):. PubMed ID: 28972548
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Characterization of piezoelectric wafer active sensor for acoustic emission sensing.
    Bhuiyan Y; Lin B; Giurgiutiu V
    Ultrasonics; 2019 Feb; 92():35-49. PubMed ID: 30218898
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A Combined High and Low Cycle Fatigue Model for Life Prediction of Turbine Blades.
    Zhu SP; Yue P; Yu ZY; Wang Q
    Materials (Basel); 2017 Jun; 10(7):. PubMed ID: 28773064
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Multiobjective Optimization of Composite Wind Turbine Blade.
    Jureczko M; Mrówka M
    Materials (Basel); 2022 Jul; 15(13):. PubMed ID: 35806770
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.