BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

265 related articles for article (PubMed ID: 29104277)

  • 21. Osteochondroma formation is independent of heparanase expression as revealed in a mouse model of hereditary multiple exostoses.
    Mundy C; Chung J; Koyama E; Bunting S; Mahimkar R; Pacifici M
    J Orthop Res; 2022 Oct; 40(10):2391-2401. PubMed ID: 34996123
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Expression of Ext1, Ext2, and heparanase genes in brain of senescence-accelerated OXYS rats in early ontogenesis and during development of neurodegenerative changes.
    Shevelev OB; Rykova VI; Fedoseeva LA; Leberfarb EY; Dymshits GM; Kolosova NG
    Biochemistry (Mosc); 2012 Jan; 77(1):56-61. PubMed ID: 22339633
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Heparan Sulfate Biosynthesis in Zebrafish.
    Filipek-Górniok B; Habicher J; Ledin J; Kjellén L
    J Histochem Cytochem; 2021 Jan; 69(1):49-60. PubMed ID: 33216642
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Mutation in the heparan sulfate biosynthesis enzyme EXT1 influences growth factor signaling and fibroblast interactions with the extracellular matrix.
    Osterholm C; Barczyk MM; Busse M; Grønning M; Reed RK; Kusche-Gullberg M
    J Biol Chem; 2009 Dec; 284(50):34935-43. PubMed ID: 19850926
    [TBL] [Abstract][Full Text] [Related]  

  • 25. An investigation of genetic polymorphisms in heparan sulfate proteoglycan core proteins and key modification enzymes in an Australian Caucasian multiple sclerosis population.
    Okolicsanyi RK; Bluhm J; Miller C; Griffiths LR; Haupt LM
    Hum Genomics; 2020 May; 14(1):18. PubMed ID: 32398079
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Role of 6-O-sulfated heparan sulfate in chronic renal fibrosis.
    Alhasan AA; Spielhofer J; Kusche-Gullberg M; Kirby JA; Ali S
    J Biol Chem; 2014 Jul; 289(29):20295-306. PubMed ID: 24878958
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Heparan sulphate synthetic and editing enzymes in ovarian cancer.
    Backen AC; Cole CL; Lau SC; Clamp AR; McVey R; Gallagher JT; Jayson GC
    Br J Cancer; 2007 May; 96(10):1544-8. PubMed ID: 17437011
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Heparanase Promotes Glioma Progression and Is Inversely Correlated with Patient Survival.
    Kundu S; Xiong A; Spyrou A; Wicher G; Marinescu VD; Edqvist PD; Zhang L; Essand M; Dimberg A; Smits A; Ilan N; Vlodavsky I; Li JP; Forsberg-Nilsson K
    Mol Cancer Res; 2016 Dec; 14(12):1243-1253. PubMed ID: 27565180
    [TBL] [Abstract][Full Text] [Related]  

  • 29. "Coding" and "Decoding": hypothesis for the regulatory mechanism involved in heparan sulfate biosynthesis.
    Zhang X; Wang F; Sheng J
    Carbohydr Res; 2016 Jun; 428():1-7. PubMed ID: 27088396
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Involvement of Ext1 and heparanase in migration of mouse FBJ osteosarcoma cells.
    Wang Y; Yang X; Yamagata S; Yamagata T; Sato T
    Mol Cell Biochem; 2013 Jan; 373(1-2):63-72. PubMed ID: 23054193
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Proteoglycan expression correlates with the phenotype of malignant and non-malignant EBV-positive B-cell lines.
    Tsidulko AY; Matskova L; Astakhova LA; Ernberg I; Grigorieva EV
    Oncotarget; 2015 Dec; 6(41):43529-39. PubMed ID: 26527314
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Distinct expression patterns of Sulf1 and Hs6st1 spatially regulate heparan sulfate sulfation during prostate development.
    Buresh-Stiemke RA; Malinowski RL; Keil KP; Vezina CM; Oosterhof A; Van Kuppevelt TH; Marker PC
    Dev Dyn; 2012 Dec; 241(12):2005-13. PubMed ID: 23074159
    [TBL] [Abstract][Full Text] [Related]  

  • 33. In vitro heparan sulfate polymerization: crucial roles of core protein moieties of primer substrates in addition to the EXT1-EXT2 interaction.
    Kim BT; Kitagawa H; Tanaka J; Tamura J; Sugahara K
    J Biol Chem; 2003 Oct; 278(43):41618-23. PubMed ID: 12907685
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Changes in heparan sulfate sulfotransferases and cell-surface heparan sulfate during SKM-1 cells granulocytic differentiation and A549 cells epithelial-mesenchymal transition.
    Zhao S; Wang Z
    Glycoconj J; 2020 Apr; 37(2):151-164. PubMed ID: 31863309
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Mutations in the heparan sulfate backbone elongating enzymes EXT1 and EXT2 have no major effect on endothelial glycocalyx and the glomerular filtration barrier.
    Khalil R; Boels MGS; ; van den Berg BM; Bruijn JA; Rabelink TJ; Hogendoorn PCW; Baelde HJ
    Mol Genet Genomics; 2022 Mar; 297(2):397-405. PubMed ID: 35103870
    [TBL] [Abstract][Full Text] [Related]  

  • 36. The exostosin family of glycosyltransferases: mRNA expression profiles and heparan sulphate structure in human breast carcinoma cell lines.
    Sembajwe LF; Katta K; Grønning M; Kusche-Gullberg M
    Biosci Rep; 2018 Aug; 38(4):. PubMed ID: 30054430
    [TBL] [Abstract][Full Text] [Related]  

  • 37. MDA-MB-231 breast cancer cell viability, motility and matrix adhesion are regulated by a complex interplay of heparan sulfate, chondroitin-/dermatan sulfate and hyaluronan biosynthesis.
    Viola M; Brüggemann K; Karousou E; Caon I; Caravà E; Vigetti D; Greve B; Stock C; De Luca G; Passi A; Götte M
    Glycoconj J; 2017 Jun; 34(3):411-420. PubMed ID: 27744520
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Gene expression of EXT1 and EXT2 during mouse brain development.
    Inatani M; Yamaguchi Y
    Brain Res Dev Brain Res; 2003 Mar; 141(1-2):129-36. PubMed ID: 12644256
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Glycosyltransferases EXTL2 and EXTL3 cellular balance dictates heparan sulfate biosynthesis and shapes gastric cancer cell motility and invasion.
    Marques C; Poças J; Gomes C; Faria-Ramos I; Reis CA; Vivès RR; Magalhães A
    J Biol Chem; 2022 Nov; 298(11):102546. PubMed ID: 36181793
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Bioengineered Chinese hamster ovary cells with Golgi-targeted 3-O-sulfotransferase-1 biosynthesize heparan sulfate with an antithrombin-binding site.
    Datta P; Li G; Yang B; Zhao X; Baik JY; Gemmill TR; Sharfstein ST; Linhardt RJ
    J Biol Chem; 2013 Dec; 288(52):37308-18. PubMed ID: 24247246
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 14.