These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
98 related articles for article (PubMed ID: 29104406)
1. Nonexistence of global solutions of abstract wave equations with high energies. Esquivel-Avila JA J Inequal Appl; 2017; 2017(1):268. PubMed ID: 29104406 [TBL] [Abstract][Full Text] [Related]
2. A new Bihari inequality and initial value problems of first order fractional differential equations. Lan K; Webb JRL Fract Calc Appl Anal; 2023; 26(3):962-988. PubMed ID: 37251655 [TBL] [Abstract][Full Text] [Related]
3. Global existence and blow up of solutions for a class of coupled parabolic systems with logarithmic nonlinearity. Deng Q; Zeng F; Wang D Math Biosci Eng; 2022 Jun; 19(8):8580-8600. PubMed ID: 35801478 [TBL] [Abstract][Full Text] [Related]
4. Nonexistence results for ultra-parabolic equations and systems involving fractional Laplacian operator in Heisenberg group. Tsegaw BB Heliyon; 2022 Oct; 8(10):e10976. PubMed ID: 36254281 [TBL] [Abstract][Full Text] [Related]
5. Blow-up of solutions of nonlinear wave equations in three space dimensions. John F Proc Natl Acad Sci U S A; 1979 Apr; 76(4):1559-60. PubMed ID: 16592639 [TBL] [Abstract][Full Text] [Related]
6. Extended nonlinear Schrödinger equation with higher-order odd and even terms and its rogue wave solutions. Ankiewicz A; Wang Y; Wabnitz S; Akhmediev N Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Jan; 89(1):012907. PubMed ID: 24580297 [TBL] [Abstract][Full Text] [Related]
7. Exact solutions for (1 + 1)-dimensional nonlinear dispersive modified Benjamin-Bona-Mahony equation and coupled Klein-Gordon equations. Khan K; Akbar MA; Islam SM Springerplus; 2014; 3():724. PubMed ID: 26034698 [TBL] [Abstract][Full Text] [Related]
8. On Finite Energy Solutions of 4-harmonic and ES-4-harmonic Maps. Branding V J Geom Anal; 2021; 31(8):8666-8685. PubMed ID: 34776722 [TBL] [Abstract][Full Text] [Related]
9. A family of wave equations with some remarkable properties. da Silva PL; Freire IL; Sampaio JCS Proc Math Phys Eng Sci; 2018 Feb; 474(2210):20170763. PubMed ID: 29507519 [TBL] [Abstract][Full Text] [Related]
10. Compatibility between shape equation and boundary conditions of lipid membranes with free edges. Tu ZC J Chem Phys; 2010 Feb; 132(8):084111. PubMed ID: 20192294 [TBL] [Abstract][Full Text] [Related]
11. Exact traveling wave solutions for system of nonlinear evolution equations. Khan K; Akbar MA; Arnous AH Springerplus; 2016; 5(1):663. PubMed ID: 27347461 [TBL] [Abstract][Full Text] [Related]
12. Travelling wave solutions for higher-order wave equations of kdv type (iii). Li J; Rui W; Long Y; He B Math Biosci Eng; 2006 Jan; 3(1):125-35. PubMed ID: 20361813 [TBL] [Abstract][Full Text] [Related]
13. Numerical study of fractional nonlinear Schrödinger equations. Klein C; Sparber C; Markowich P Proc Math Phys Eng Sci; 2014 Dec; 470(2172):20140364. PubMed ID: 25484604 [TBL] [Abstract][Full Text] [Related]
14. Investigation of Solitary wave solutions for Vakhnenko-Parkes equation via exp-function and Exp(-ϕ(ξ))-expansion method. Roshid HO; Kabir MR; Bhowmik RC; Datta BK Springerplus; 2014; 3():692. PubMed ID: 26034687 [TBL] [Abstract][Full Text] [Related]
15. Nonexistence of the solitary-wave solutions of the Sakuma-Nishiguchi equation. Lou Sy Phys Rev B Condens Matter; 1992 Oct; 46(15):9815-9816. PubMed ID: 10002802 [No Abstract] [Full Text] [Related]
16. Regularity of inviscid shell models of turbulence. Constantin P; Levant B; Titi ES Phys Rev E Stat Nonlin Soft Matter Phys; 2007 Jan; 75(1 Pt 2):016304. PubMed ID: 17358250 [TBL] [Abstract][Full Text] [Related]
17. Solitary wave solutions to some nonlinear fractional evolution equations in mathematical physics. Ali HMS; Habib MA; Miah MM; Akbar MA Heliyon; 2020 Apr; 6(4):e03727. PubMed ID: 32322721 [TBL] [Abstract][Full Text] [Related]
18. Wave breaking and shock waves for a periodic shallow water equation. Escher J Philos Trans A Math Phys Eng Sci; 2007 Sep; 365(1858):2281-9. PubMed ID: 17360268 [TBL] [Abstract][Full Text] [Related]
19. Global existence and blow-up results for Ding J J Inequal Appl; 2018; 2018(1):67. PubMed ID: 29628743 [TBL] [Abstract][Full Text] [Related]
20. Travelling wave solutions of the reaction-diffusion mathematical model of glioblastoma growth: an Abel equation based approach. Harko T; Mak MK Math Biosci Eng; 2015 Feb; 12(1):41-69. PubMed ID: 25811333 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]