BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

246 related articles for article (PubMed ID: 29104544)

  • 1. Sensorimotor Reorganizations of Arm Kinematics and Postural Strategy for Functional Whole-Body Reaching Movements in Microgravity.
    Macaluso T; Bourdin C; Buloup F; Mille ML; Sainton P; Sarlegna FR; Vercher JL; Bringoux L
    Front Physiol; 2017; 8():821. PubMed ID: 29104544
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Kinematic features of whole-body reaching movements underwater: Neutral buoyancy effects.
    Macaluso T; Bourdin C; Buloup F; Mille ML; Sainton P; Sarlegna FR; Taillebot V; Vercher JL; Weiss P; Bringoux L
    Neuroscience; 2016 Jul; 327():125-35. PubMed ID: 27095713
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Double-Step Paradigm in Microgravity: Preservation of Sensorimotor Flexibility in Altered Gravitational Force Field.
    Bringoux L; Macaluso T; Sainton P; Chomienne L; Buloup F; Mouchnino L; Simoneau M; Blouin J
    Front Physiol; 2020; 11():377. PubMed ID: 32390872
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Human whole-body reaching in normal gravity and microgravity reveals a strong temporal coordination between postural and focal task components.
    Patron J; Stapley P; Pozzo T
    Exp Brain Res; 2005 Aug; 165(1):84-96. PubMed ID: 15864564
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effect of gravity-like torque on goal-directed arm movements in microgravity.
    Bringoux L; Blouin J; Coyle T; Ruget H; Mouchnino L
    J Neurophysiol; 2012 May; 107(9):2541-8. PubMed ID: 22298835
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effects of Simulated Microgravity and Hypergravity Conditions on Arm Movements in Normogravity.
    Jamšek M; Kunavar T; Blohm G; Nozaki D; Papaxanthis C; White O; Babič J
    Front Neural Circuits; 2021; 15():750176. PubMed ID: 34970122
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Motor coordination in weightless conditions revealed by long-term microgravity adaptation.
    Baroni G; Pedrocchi A; Ferrigno G; Massion J; Pedotti A
    Acta Astronaut; 2001; 49(3-10):199-213. PubMed ID: 11669110
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Reaching while standing in microgravity: a new postural solution to oversimplify movement control.
    Casellato C; Tagliabue M; Pedrocchi A; Papaxanthis C; Ferrigno G; Pozzo T
    Exp Brain Res; 2012 Jan; 216(2):203-15. PubMed ID: 22159588
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effects of Local Gravity Compensation on Motor Control During Altered Environmental Gravity.
    Kunavar T; Jamšek M; Barbiero M; Blohm G; Nozaki D; Papaxanthis C; White O; Babič J
    Front Neural Circuits; 2021; 15():750267. PubMed ID: 34744639
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Do postural constraints affect eye, head, and arm coordination?
    Stamenkovic A; Stapley PJ; Robins R; Hollands MA
    J Neurophysiol; 2018 Oct; 120(4):2066-2082. PubMed ID: 30020836
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Adaptation of center of mass control under microgravity in a whole-body lifting task.
    Kingma I; Toussaint HM; Commissaris DA; Savelsbergh GJ
    Exp Brain Res; 1999 Mar; 125(1):35-42. PubMed ID: 10100974
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Impaired posture, movement preparation, and execution during both paretic and nonparetic reaching following stroke.
    Yang CL; Creath RA; Magder L; Rogers MW; McCombe Waller S
    J Neurophysiol; 2019 Apr; 121(4):1465-1477. PubMed ID: 30785824
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Kinematic synergy adaptation to microgravity during forward trunk movement.
    Vernazza-Martin S; Martin N; Massion J
    J Neurophysiol; 2000 Jan; 83(1):453-64. PubMed ID: 10634887
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Use of the trunk for reaching targets placed within and beyond the reach in adult hemiparesis.
    Levin MF; Michaelsen SM; Cirstea CM; Roby-Brami A
    Exp Brain Res; 2002 Mar; 143(2):171-80. PubMed ID: 11880893
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Kinematic and dynamic processes for the control of pointing movements in humans revealed by short-term exposure to microgravity.
    Papaxanthis C; Pozzo T; McIntyre J
    Neuroscience; 2005; 135(2):371-83. PubMed ID: 16125854
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Distinct adaptation patterns between grip dynamics and arm kinematics when the body is upside-down.
    Opsomer L; Crevecoeur F; Thonnard JL; McIntyre J; Lefèvre P
    J Neurophysiol; 2021 Mar; 125(3):862-874. PubMed ID: 33656927
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Temporal relationship between postural and focal components of a whole-body reaching movement: a study case of short-term adaptation in microgravity condition.
    Patron J; Stapley PJ; Pozzo T
    J Gravit Physiol; 2004 Jul; 11(2):P23-4. PubMed ID: 16231434
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Sensorimotor adaptation of point-to-point arm movements after spaceflight: the role of internal representation of gravity force in trajectory planning.
    Gaveau J; Paizis C; Berret B; Pozzo T; Papaxanthis C
    J Neurophysiol; 2011 Aug; 106(2):620-9. PubMed ID: 21562193
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Evidence of short-term adaptation to microgravity of neuromuscular synergy during a whole body movement.
    Patron J; Stapley P; Pozzo T
    J Gravit Physiol; 2002 Jul; 9(1):P167-8. PubMed ID: 15002532
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Inverse dynamic investigation of voluntary leg lateral movements in weightlessness: a new microgravity-specific strategy.
    Pedrocchi A; Baroni G; Pedotti A; Massion J; Ferrigno G
    J Biomech; 2005 Apr; 38(4):769-77. PubMed ID: 15713298
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.