BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

189 related articles for article (PubMed ID: 29104579)

  • 1. High Ambient Temperature Represses Anthocyanin Biosynthesis through Degradation of HY5.
    Kim S; Hwang G; Lee S; Zhu JY; Paik I; Nguyen TT; Kim J; Oh E
    Front Plant Sci; 2017; 8():1787. PubMed ID: 29104579
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Repression of MYBL2 by Both microRNA858a and HY5 Leads to the Activation of Anthocyanin Biosynthetic Pathway in Arabidopsis.
    Wang Y; Wang Y; Song Z; Zhang H
    Mol Plant; 2016 Oct; 9(10):1395-1405. PubMed ID: 27450422
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Short Hypocotyl in White Light1 Interacts with Elongated Hypocotyl5 (HY5) and Constitutive Photomorphogenic1 (COP1) and Promotes COP1-Mediated Degradation of HY5 during Arabidopsis Seedling Development.
    Srivastava AK; Senapati D; Srivastava A; Chakraborty M; Gangappa SN; Chattopadhyay S
    Plant Physiol; 2015 Dec; 169(4):2922-34. PubMed ID: 26474641
    [TBL] [Abstract][Full Text] [Related]  

  • 4. COP1/SPA ubiquitin ligase complexes repress anthocyanin accumulation under low light and high light conditions.
    Maier A; Hoecker U
    Plant Signal Behav; 2015; 10(1):e970440. PubMed ID: 25482806
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Prefoldins Negatively Regulate Cold Acclimation in Arabidopsis thaliana by Promoting Nuclear Proteasome-Mediated HY5 Degradation.
    Perea-Resa C; Rodríguez-Milla MA; Iniesto E; Rubio V; Salinas J
    Mol Plant; 2017 Jun; 10(6):791-804. PubMed ID: 28412546
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Functional analysis of ZmCOP1 and ZmHY5 reveals conserved light signaling mechanism in maize and Arabidopsis.
    Huai J; Jing Y; Lin R
    Physiol Plant; 2020 Jul; 169(3):369-379. PubMed ID: 32208521
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Jasmonic acid enhancement of anthocyanin accumulation is dependent on phytochrome A signaling pathway under far-red light in Arabidopsis.
    Li T; Jia KP; Lian HL; Yang X; Li L; Yang HQ
    Biochem Biophys Res Commun; 2014 Nov; 454(1):78-83. PubMed ID: 25450360
    [TBL] [Abstract][Full Text] [Related]  

  • 8. PIF3 regulates anthocyanin biosynthesis in an HY5-dependent manner with both factors directly binding anthocyanin biosynthetic gene promoters in Arabidopsis.
    Shin J; Park E; Choi G
    Plant J; 2007 Mar; 49(6):981-94. PubMed ID: 17319847
    [TBL] [Abstract][Full Text] [Related]  

  • 9. HY5 is a point of convergence between cryptochrome and cytokinin signalling pathways in Arabidopsis thaliana.
    Vandenbussche F; Habricot Y; Condiff AS; Maldiney R; Van der Straeten D; Ahmad M
    Plant J; 2007 Feb; 49(3):428-41. PubMed ID: 17217468
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Gibberellins negatively regulate low temperature-induced anthocyanin accumulation in a HY5/HYH-dependent manner.
    Zhang Y; Liu Z; Liu R; Hao H; Bi Y
    Plant Signal Behav; 2011 May; 6(5):632-4. PubMed ID: 21636970
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Low Temperature-Enhanced Flavonol Synthesis Requires Light-Associated Regulatory Components in Arabidopsis thaliana.
    Bhatia C; Pandey A; Gaddam SR; Hoecker U; Trivedi PK
    Plant Cell Physiol; 2018 Oct; 59(10):2099-2112. PubMed ID: 30010959
    [TBL] [Abstract][Full Text] [Related]  

  • 12. MYBD employed by HY5 increases anthocyanin accumulation via repression of MYBL2 in Arabidopsis.
    Nguyen NH; Jeong CY; Kang GH; Yoo SD; Hong SW; Lee H
    Plant J; 2015 Dec; 84(6):1192-205. PubMed ID: 26576746
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The CRY2-COP1-HY5-BBX7/8 module regulates blue light-dependent cold acclimation in Arabidopsis.
    Li Y; Shi Y; Li M; Fu D; Wu S; Li J; Gong Z; Liu H; Yang S
    Plant Cell; 2021 Nov; 33(11):3555-3573. PubMed ID: 34427646
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The SMXL8-AGL9 module mediates crosstalk between strigolactone and gibberellin to regulate strigolactone-induced anthocyanin biosynthesis in apple.
    An JP; Zhao L; Cao YP; Ai D; Li MY; You CX; Han Y
    Plant Cell; 2024 Jun; ():. PubMed ID: 38917246
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Identification of Candidate HY5-Dependent and -Independent Regulators of Anthocyanin Biosynthesis in Tomato.
    Qiu Z; Wang H; Li D; Yu B; Hui Q; Yan S; Huang Z; Cui X; Cao B
    Plant Cell Physiol; 2019 Mar; 60(3):643-656. PubMed ID: 30597099
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The Photomorphogenic Transcription Factor PpHY5 Regulates Anthocyanin Accumulation in Response to UVA and UVB Irradiation.
    Zhao Y; Min T; Chen M; Wang H; Zhu C; Jin R; Allan AC; Lin-Wang K; Xu C
    Front Plant Sci; 2020; 11():603178. PubMed ID: 33537042
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Transcription coactivator Arabidopsis ANGUSTIFOLIA3 modulates anthocyanin accumulation and light-induced root elongation through transrepression of Constitutive Photomorphogenic1.
    Meng LS
    Plant Cell Environ; 2015 Apr; 38(4):838-51. PubMed ID: 25256341
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Light signaling induces anthocyanin biosynthesis via AN3 mediated COP1 expression.
    Meng LS; Liu A
    Plant Signal Behav; 2015; 10(9):e1001223. PubMed ID: 26357851
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The E3 Ubiquitin Ligase COP1 Regulates Thermosensory Flowering by Triggering GI Degradation in Arabidopsis.
    Jang K; Lee HG; Jung SJ; Paek NC; Seo PJ
    Sci Rep; 2015 Jul; 5():12071. PubMed ID: 26159740
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Two E3 ligases antagonistically regulate the UV-B response in
    Ren H; Han J; Yang P; Mao W; Liu X; Qiu L; Qian C; Liu Y; Chen Z; Ouyang X; Chen X; Deng XW; Huang X
    Proc Natl Acad Sci U S A; 2019 Mar; 116(10):4722-4731. PubMed ID: 30787186
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.