These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

215 related articles for article (PubMed ID: 29104747)

  • 21. Development and preliminary evaluation of a novel low cost VR-based upper limb stroke rehabilitation platform using Wii technology.
    Tsekleves E; Paraskevopoulos IT; Warland A; Kilbride C
    Disabil Rehabil Assist Technol; 2016; 11(5):413-22. PubMed ID: 25391221
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Effects of robot-aided bilateral force-induced isokinetic arm training combined with conventional rehabilitation on arm motor function in patients with chronic stroke.
    Chang JJ; Tung WL; Wu WL; Huang MH; Su FC
    Arch Phys Med Rehabil; 2007 Oct; 88(10):1332-8. PubMed ID: 17908578
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Mechanical design of EFW Exo II: A hybrid exoskeleton for elbow-forearm-wrist rehabilitation.
    Bian H; Chen Z; Wang H; Zhao T
    IEEE Int Conf Rehabil Robot; 2017 Jul; 2017():689-694. PubMed ID: 28813900
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Modulation of shoulder muscle and joint function using a powered upper-limb exoskeleton.
    Wu W; Fong J; Crocher V; Lee PVS; Oetomo D; Tan Y; Ackland DC
    J Biomech; 2018 Apr; 72():7-16. PubMed ID: 29506759
    [TBL] [Abstract][Full Text] [Related]  

  • 25. A Neuromuscular Electrical Stimulation (NMES) and robot hybrid system for multi-joint coordinated upper limb rehabilitation after stroke.
    Rong W; Li W; Pang M; Hu J; Wei X; Yang B; Wai H; Zheng X; Hu X
    J Neuroeng Rehabil; 2017 Apr; 14(1):34. PubMed ID: 28446181
    [TBL] [Abstract][Full Text] [Related]  

  • 26. RUPERT closed loop control design.
    Balasubramanian S; Wei R; He J
    Annu Int Conf IEEE Eng Med Biol Soc; 2008; 2008():3467-70. PubMed ID: 19163455
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Development of a biological signal-based evaluator for robot-assisted upper-limb rehabilitation: a pilot study.
    Sheng B; Tang L; Moosman OM; Deng C; Xie S; Zhang Y
    Australas Phys Eng Sci Med; 2019 Sep; 42(3):789-801. PubMed ID: 31372900
    [TBL] [Abstract][Full Text] [Related]  

  • 28. The H2 robotic exoskeleton for gait rehabilitation after stroke: early findings from a clinical study.
    Bortole M; Venkatakrishnan A; Zhu F; Moreno JC; Francisco GE; Pons JL; Contreras-Vidal JL
    J Neuroeng Rehabil; 2015 Jun; 12():54. PubMed ID: 26076696
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Bilateral robots for upper-limb stroke rehabilitation: State of the art and future prospects.
    Sheng B; Zhang Y; Meng W; Deng C; Xie S
    Med Eng Phys; 2016 Jul; 38(7):587-606. PubMed ID: 27117423
    [TBL] [Abstract][Full Text] [Related]  

  • 30. A Trade-Off between Complexity and Interaction Quality for Upper Limb Exoskeleton Interfaces.
    Verdel D; Sahm G; Bruneau O; Berret B; Vignais N
    Sensors (Basel); 2023 Apr; 23(8):. PubMed ID: 37112463
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Interaction force and motion estimators facilitating impedance control of the upper limb rehabilitation robot.
    Mancisidor A; Zubizarreta A; Cabanes I; Bengoa P; Jung JH
    IEEE Int Conf Rehabil Robot; 2017 Jul; 2017():561-566. PubMed ID: 28813879
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Home-based Computer Assisted Arm Rehabilitation (hCAAR) robotic device for upper limb exercise after stroke: results of a feasibility study in home setting.
    Sivan M; Gallagher J; Makower S; Keeling D; Bhakta B; O'Connor RJ; Levesley M
    J Neuroeng Rehabil; 2014 Dec; 11():163. PubMed ID: 25495889
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Modeling and design of a tendon actuated soft robotic exoskeleton for hemiparetic upper limb rehabilitation.
    Nycz CJ; Delph MA; Fischer GS
    Annu Int Conf IEEE Eng Med Biol Soc; 2015; 2015():3889-92. PubMed ID: 26737143
    [TBL] [Abstract][Full Text] [Related]  

  • 34. The combined action of a passive exoskeleton and an EMG-controlled neuroprosthesis for upper limb stroke rehabilitation: First results of the RETRAINER project.
    Ambrosini E; Ferrante S; Zajc J; Bulgheroni M; Baccinelli W; d'Amico E; Schauer T; Wiesener C; Russold M; Gfoehler M; Puchinger M; Weber M; Becker S; Krakow K; Rossini M; Proserpio D; Gasperini G; Molteni F; Ferrigno G; Pedrocchi A
    IEEE Int Conf Rehabil Robot; 2017 Jul; 2017():56-61. PubMed ID: 28813793
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Combination of Exoskeletal Upper Limb Robot and Occupational Therapy Improve Activities of Daily Living Function in Acute Stroke Patients.
    Iwamoto Y; Imura T; Suzukawa T; Fukuyama H; Ishii T; Taki S; Imada N; Shibukawa M; Inagawa T; Araki H; Araki O
    J Stroke Cerebrovasc Dis; 2019 Jul; 28(7):2018-2025. PubMed ID: 31047819
    [TBL] [Abstract][Full Text] [Related]  

  • 36. An Optimized Stimulation Control System for Upper Limb Exoskeleton Robot-Assisted Rehabilitation Using a Fuzzy Logic-Based Pain Detection Approach.
    Abdallah IB; Bouteraa Y
    Sensors (Basel); 2024 Feb; 24(4):. PubMed ID: 38400205
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Kinematic analysis of upper limbs and trunk movement during bilateral movement after stroke.
    Messier S; Bourbonnais D; Desrosiers J; Roy Y
    Arch Phys Med Rehabil; 2006 Nov; 87(11):1463-70. PubMed ID: 17084121
    [TBL] [Abstract][Full Text] [Related]  

  • 38. [Research on Control System of an Exoskeleton Upper-limb Rehabilitation Robot].
    Wang L; Hu X; Hu J; Fang Y; He R; Yu H
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2016 Dec; 33(6):1168-75. PubMed ID: 29715415
    [TBL] [Abstract][Full Text] [Related]  

  • 39. A mechanism for elbow exoskeleton for customised training.
    Manna SK; Dubey VN
    IEEE Int Conf Rehabil Robot; 2017 Jul; 2017():1597-1602. PubMed ID: 28814048
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Design, Development, and Functional Validation of a 3D-Printed Passive Upper Limb Exoskeleton.
    Urendes E; Sanchez C; Lerma-Lara S; Rojo A; Costa V; Raya R
    IEEE Trans Neural Syst Rehabil Eng; 2024; 32():2503-2512. PubMed ID: 38980787
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.