These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

124 related articles for article (PubMed ID: 29104980)

  • 21. Gold nanoparticles with tipped surface structures as substrates for single-particle surface-enhanced Raman spectroscopy: concave nanocubes, nanotrisoctahedra, and nanostars.
    Zhang Q; Large N; Wang H
    ACS Appl Mater Interfaces; 2014 Oct; 6(19):17255-67. PubMed ID: 25222940
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Plasmonic color analysis of Ag-coated black-Si SERS substrate.
    Asiala SM; Marr JM; Gervinskas G; Juodkazis S; Schultz ZD
    Phys Chem Chem Phys; 2015 Nov; 17(45):30461-7. PubMed ID: 26510016
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Ag@SiO2 Core-Shell Nanostructures: Distance-Dependent Plasmon Coupling and SERS Investigation.
    Shanthil M; Thomas R; Swathi RS; George Thomas K
    J Phys Chem Lett; 2012 Jun; 3(11):1459-64. PubMed ID: 26285622
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Plasmonic control of the shape of the Raman spectrum of a single molecule in a silver nanoparticle dimer.
    Dadosh T; Sperling J; Bryant GW; Breslow R; Shegai T; Dyshel M; Haran G; Bar-Joseph I
    ACS Nano; 2009 Jul; 3(7):1988-94. PubMed ID: 19534506
    [TBL] [Abstract][Full Text] [Related]  

  • 25. A SERS and electrical sensor from gas-phase generated Ag nanoparticles self-assembled on planar substrates.
    Wang S; Tay LL; Liu H
    Analyst; 2016 Mar; 141(5):1721-33. PubMed ID: 26824092
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Plasmon-driven surface catalysis in hybridized plasmonic gap modes.
    Wang H; Liu T; Huang Y; Fang Y; Liu R; Wang S; Wen W; Sun M
    Sci Rep; 2014 Nov; 4():7087. PubMed ID: 25404139
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Graphene oxide and shape-controlled silver nanoparticle hybrids for ultrasensitive single-particle surface-enhanced Raman scattering (SERS) sensing.
    Fan W; Lee YH; Pedireddy S; Zhang Q; Liu T; Ling XY
    Nanoscale; 2014 May; 6(9):4843-51. PubMed ID: 24664184
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Structure enhancement factor relationships in single gold nanoantennas by surface-enhanced Raman excitation spectroscopy.
    Kleinman SL; Sharma B; Blaber MG; Henry AI; Valley N; Freeman RG; Natan MJ; Schatz GC; Van Duyne RP
    J Am Chem Soc; 2013 Jan; 135(1):301-8. PubMed ID: 23214430
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Plasmonic "nano-fingers on nanowires" as SERS substrates.
    Sharma Y; Dhawan A
    Opt Lett; 2016 May; 41(9):2085-8. PubMed ID: 27128080
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Plasmonic nanorice antenna on triangle nanoarray for surface-enhanced Raman scattering detection of hepatitis B virus DNA.
    Li M; Cushing SK; Liang H; Suri S; Ma D; Wu N
    Anal Chem; 2013 Feb; 85(4):2072-8. PubMed ID: 23320458
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Electron Transport Across Plasmonic Molecular Nanogaps Interrogated with Surface-Enhanced Raman Scattering.
    Lin L; Zhang Q; Li X; Qiu M; Jiang X; Jin W; Gu H; Lei DY; Ye J
    ACS Nano; 2018 Jul; 12(7):6492-6503. PubMed ID: 29924592
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Differential Wavevector Distribution of Surface-Enhanced Raman Scattering and Fluorescence in a Film-Coupled Plasmonic Nanowire Cavity.
    Vasista AB; Jog H; Heilpern T; Sykes ME; Tiwari S; Sharma DK; Chaubey SK; Wiederrecht GP; Gray SK; Kumar GVP
    Nano Lett; 2018 Jan; 18(1):650-655. PubMed ID: 29244518
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Metal-Catalyzed Chemical Reaction of Single Molecules Directly Probed by Vibrational Spectroscopy.
    Choi HK; Park WH; Park CG; Shin HH; Lee KS; Kim ZH
    J Am Chem Soc; 2016 Apr; 138(13):4673-84. PubMed ID: 26964567
    [TBL] [Abstract][Full Text] [Related]  

  • 34. An ordered mesoporous Ag superstructure synthesized via a template strategy for surface-enhanced Raman spectroscopy.
    Tian C; Li J; Ma C; Wang P; Sun X; Fang J
    Nanoscale; 2015 Aug; 7(29):12318-24. PubMed ID: 26145709
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Porous Silicon Covered with Silver Nanoparticles as Surface-Enhanced Raman Scattering (SERS) Substrate for Ultra-Low Concentration Detection.
    Kosović M; Balarin M; Ivanda M; Đerek V; Marciuš M; Ristić M; Gamulin O
    Appl Spectrosc; 2015 Dec; 69(12):1417-24. PubMed ID: 26556231
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Plasmonic enhancement of SERS measured on molecules in carbon nanotubes.
    Mueller NS; Heeg S; Kusch P; Gaufrès E; Tang NY; Hübner U; Martel R; Vijayaraghavan A; Reich S
    Faraday Discuss; 2017 Dec; 205():85-103. PubMed ID: 28914310
    [TBL] [Abstract][Full Text] [Related]  

  • 37. SERS and DFT study of p-hydroxybenzoic acid adsorbed on colloidal silver particles.
    Chen Y; Chen SJ; Li S; Wei JJ
    Cell Mol Biol (Noisy-le-grand); 2015 Oct; 61(5):11-5. PubMed ID: 26475382
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Plasmonic coupled nanotorch structures leading to uniform surface enhanced Raman scattering detection.
    Chen HM; Pang L; King A; Hwang GM; Fainman Y
    Nanoscale; 2012 Dec; 4(24):7664-9. PubMed ID: 23051970
    [TBL] [Abstract][Full Text] [Related]  

  • 39. The Design and Optimization of Plasmonic Crystals for Surface Enhanced Raman Spectroscopy Using the Finite Difference Time Domain Method.
    Bigness A; Montgomery J
    Materials (Basel); 2018 Apr; 11(5):. PubMed ID: 29701635
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Combined linear response quantum mechanics and classical electrodynamics (QM/ED) method for the calculation of surface-enhanced Raman spectra.
    Mullin J; Schatz GC
    J Phys Chem A; 2012 Mar; 116(8):1931-8. PubMed ID: 22283122
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.