BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

417 related articles for article (PubMed ID: 29105235)

  • 1. The biology and polymer physics underlying large-scale chromosome organization.
    Sazer S; Schiessel H
    Traffic; 2018 Feb; 19(2):87-104. PubMed ID: 29105235
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Genome organization via loop extrusion, insights from polymer physics models.
    Ghosh SK; Jost D
    Brief Funct Genomics; 2020 Mar; 19(2):119-127. PubMed ID: 31711163
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Chromosome organization by one-sided and two-sided loop extrusion.
    Banigan EJ; van den Berg AA; Brandão HB; Marko JF; Mirny LA
    Elife; 2020 Apr; 9():. PubMed ID: 32250245
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A mechanism of cohesin-dependent loop extrusion organizes zygotic genome architecture.
    Gassler J; Brandão HB; Imakaev M; Flyamer IM; Ladstätter S; Bickmore WA; Peters JM; Mirny LA; Tachibana K
    EMBO J; 2017 Dec; 36(24):3600-3618. PubMed ID: 29217590
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Polymer Modeling Reveals Interplay between Physical Properties of Chromosomal DNA and the Size and Distribution of Condensin-Based Chromatin Loops.
    Kolbin D; Walker BL; Hult C; Stanton JD; Adalsteinsson D; Forest MG; Bloom K
    Genes (Basel); 2023 Dec; 14(12):. PubMed ID: 38137015
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Three-dimensional organization and dynamics of the genome.
    Szalaj P; Plewczynski D
    Cell Biol Toxicol; 2018 Oct; 34(5):381-404. PubMed ID: 29568981
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A Brownian ratchet model for DNA loop extrusion by the cohesin complex.
    Higashi TL; Pobegalov G; Tang M; Molodtsov MI; Uhlmann F
    Elife; 2021 Jul; 10():. PubMed ID: 34309513
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Physics-Based Polymer Models to Probe Chromosome Structure in Single Molecules.
    Conte M; Chiariello AM; Bianco S; Esposito A; Abraham A; Nicodemi M
    Methods Mol Biol; 2023; 2655():57-66. PubMed ID: 37212988
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Principles of Chromosome Architecture Revealed by Hi-C.
    Eagen KP
    Trends Biochem Sci; 2018 Jun; 43(6):469-478. PubMed ID: 29685368
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Predicting genome organisation and function with mechanistic modelling.
    Chiang M; Brackley CA; Marenduzzo D; Gilbert N
    Trends Genet; 2022 Apr; 38(4):364-378. PubMed ID: 34857425
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Chromatin extrusion explains key features of loop and domain formation in wild-type and engineered genomes.
    Sanborn AL; Rao SS; Huang SC; Durand NC; Huntley MH; Jewett AI; Bochkov ID; Chinnappan D; Cutkosky A; Li J; Geeting KP; Gnirke A; Melnikov A; McKenna D; Stamenova EK; Lander ES; Aiden EL
    Proc Natl Acad Sci U S A; 2015 Nov; 112(47):E6456-65. PubMed ID: 26499245
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Polymer simulations guide the detection and quantification of chromatin loop extrusion by imaging.
    Sabaté T; Lelandais B; Bertrand E; Zimmer C
    Nucleic Acids Res; 2023 Apr; 51(6):2614-2632. PubMed ID: 36840746
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Chromatin organization by an interplay of loop extrusion and compartmental segregation.
    Nuebler J; Fudenberg G; Imakaev M; Abdennur N; Mirny LA
    Proc Natl Acad Sci U S A; 2018 Jul; 115(29):E6697-E6706. PubMed ID: 29967174
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Chromatin folding--from biology to polymer models and back.
    Tark-Dame M; van Driel R; Heermann DW
    J Cell Sci; 2011 Mar; 124(Pt 6):839-45. PubMed ID: 21378305
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A unified framework for inferring the multi-scale organization of chromatin domains from Hi-C.
    Bak JH; Kim MH; Liu L; Hyeon C
    PLoS Comput Biol; 2021 Mar; 17(3):e1008834. PubMed ID: 33724986
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Dynamic and equilibrium properties of finite-size polymer models of chromosome folding.
    Conte M; Fiorillo L; Annunziatella C; Esposito A; Musella F; Abraham A; Bianco S; Chiariello AM
    Phys Rev E; 2021 Nov; 104(5-1):054402. PubMed ID: 34942797
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Unveiling the Machinery behind Chromosome Folding by Polymer Physics Modeling.
    Conte M; Esposito A; Vercellone F; Abraham A; Bianco S
    Int J Mol Sci; 2023 Feb; 24(4):. PubMed ID: 36835064
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Simulation of Different Three-Dimensional Models of Whole Interphase Nuclei Compared to Experiments - A Consistent Scale-Bridging Simulation Framework for Genome Organization.
    Knoch TA
    Results Probl Cell Differ; 2022; 70():495-549. PubMed ID: 36348120
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The macro and micro of chromosome conformation capture.
    Goel VY; Hansen AS
    Wiley Interdiscip Rev Dev Biol; 2021 Nov; 10(6):e395. PubMed ID: 32987449
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Loops and the activity of loop extrusion factors constrain chromatin dynamics.
    Bailey MLP; Surovtsev I; Williams JF; Yan H; Yuan T; Li K; Duseau K; Mochrie SGJ; King MC
    Mol Biol Cell; 2023 Jul; 34(8):ar78. PubMed ID: 37126401
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 21.