BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

178 related articles for article (PubMed ID: 29105512)

  • 1. Changes in the metabolome and microRNA levels in biological fluids might represent biomarkers of neurotoxicity: A trimethyltin study.
    Imam SZ; He Z; Cuevas E; Rosas-Hernandez H; Lantz SM; Sarkar S; Raymick J; Robinson B; Hanig JP; Herr D; MacMillan D; Smith A; Liachenko S; Ferguson S; O'Callaghan J; Miller D; Somps C; Pardo ID; Slikker W; B Pierson J; Roberts R; Gong B; Tong W; Aschner M; J Kallman M; Calligaro D; Paule MG
    Exp Biol Med (Maywood); 2018 Feb; 243(3):228-236. PubMed ID: 29105512
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Translational Biomarkers of Neurotoxicity: A Health and Environmental Sciences Institute Perspective on the Way Forward.
    Roberts RA; Aschner M; Calligaro D; Guilarte TR; Hanig JP; Herr DW; Hudzik TJ; Jeromin A; Kallman MJ; Liachenko S; Lynch JJ; Miller DB; Moser VC; O'Callaghan JP; Slikker W; Paule MG
    Toxicol Sci; 2015 Dec; 148(2):332-40. PubMed ID: 26609132
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Circulating miR-9* and miR-384-5p as potential indicators for trimethyltin-induced neurotoxicity.
    Ogata K; Sumida K; Miyata K; Kushida M; Kuwamura M; Yamate J
    Toxicol Pathol; 2015 Feb; 43(2):198-208. PubMed ID: 24777749
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Neurotoxicity of trimethyltin in rat cochlear organotypic cultures.
    Yu J; Ding D; Sun H; Salvi R; Roth JA
    Neurotox Res; 2015 Jul; 28(1):43-54. PubMed ID: 25957118
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Autoantibodies to neurotypic and gliotypic proteins as biomarkers of neurotoxicity: assessment of trimethyltin (TMT).
    El-Fawal HA; O'Callaghan JP
    Neurotoxicology; 2008 Jan; 29(1):109-15. PubMed ID: 18001836
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Peripheral and central nervous system lesions caused by triethyl- and trimethyltin salts in rats.
    O'Shaughnessy DJ; Losos GJ
    Toxicol Pathol; 1986; 14(2):141-8. PubMed ID: 3764311
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Performance of the prospective T
    Liachenko S; Ramu J; Paule MG; Hanig J
    Neurotoxicol Teratol; 2023; 100():107289. PubMed ID: 37689269
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Methylated tin toxicity a reappraisal using rodents models.
    Trabucco A; Di Pietro P; Nori SL; Fulceri F; Fumagalli L; Paparelli A; Fornai F
    Arch Ital Biol; 2009 Dec; 147(4):141-53. PubMed ID: 20162863
    [TBL] [Abstract][Full Text] [Related]  

  • 9. How does trimethyltin affect the brain: facts and hypotheses.
    Koczyk D
    Acta Neurobiol Exp (Wars); 1996; 56(2):587-96. PubMed ID: 8768310
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Evaluation of neurotoxicity potential in rats: the functional observational battery.
    Boucard A; Bétat AM; Forster R; Simonnard A; Froget G
    Curr Protoc Pharmacol; 2010 Dec; Chapter 10():Unit 10.12. PubMed ID: 21935896
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Cerebrospinal fluid protein biomarker panel for assessment of neurotoxicity induced by kainic acid in rats.
    Glushakova OY; Jeromin A; Martinez J; Johnson D; Denslow N; Streeter J; Hayes RL; Mondello S
    Toxicol Sci; 2012 Nov; 130(1):158-67. PubMed ID: 22790971
    [TBL] [Abstract][Full Text] [Related]  

  • 12. mRNA expression is a relevant tool to identify developmental neurotoxicants using an in vitro approach.
    Hogberg HT; Kinsner-Ovaskainen A; Coecke S; Hartung T; Bal-Price AK
    Toxicol Sci; 2010 Jan; 113(1):95-115. PubMed ID: 19651682
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Initial biological qualification of SBDP-145 as a biomarker of compound-induced neurodegeneration in the rat.
    Pritt ML; Hall DG; Jordan WH; Ballard DW; Wang KK; Müller UR; Watson DE
    Toxicol Sci; 2014 Oct; 141(2):398-408. PubMed ID: 25015659
    [TBL] [Abstract][Full Text] [Related]  

  • 14. FK506-protective effects against trimethyltin neurotoxicity in rats: hippocampal expression analyses reveal the involvement of periarterial osteopontin.
    Morita M; Imai H; Liu Y; Xu X; Sadamatsu M; Nakagami R; Shirakawa T; Nakano K; Kita Y; Yoshida K; Tsunashima K; Kato N
    Neuroscience; 2008 Jun; 153(4):1135-45. PubMed ID: 18440706
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Expression of BKV and JCV encoded microRNA in human cerebrospinal fluid, plasma and urine.
    Pietilä T; Nummi M; Auvinen P; Mannonen L; Auvinen E
    J Clin Virol; 2015 Apr; 65():1-5. PubMed ID: 25766978
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The use of MRI to assist the section selections for classical pathology assessment of neurotoxicity.
    Hanig J; Paule MG; Ramu J; Schmued L; Konak T; Chigurupati S; Slikker W; Sarkar S; Liachenko S
    Regul Toxicol Pharmacol; 2014 Dec; 70(3):641-7. PubMed ID: 25265367
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Electrophysiological recording of re-aggregating brain cell cultures on multi-electrode arrays to detect acute neurotoxic effects.
    van Vliet E; Stoppini L; Balestrino M; Eskes C; Griesinger C; Sobanski T; Whelan M; Hartung T; Coecke S
    Neurotoxicology; 2007 Nov; 28(6):1136-46. PubMed ID: 17692379
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The neurotoxicology and pathology of organomercury, organolead, and organotin.
    Chang LW
    J Toxicol Sci; 1990 Dec; 15 Suppl 4():125-51. PubMed ID: 2100318
    [TBL] [Abstract][Full Text] [Related]  

  • 19. An integrative approach to neurotoxicology.
    Dorman DC
    Toxicol Pathol; 2000; 28(1):37-42. PubMed ID: 10668989
    [TBL] [Abstract][Full Text] [Related]  

  • 20.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 9.