These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
625 related articles for article (PubMed ID: 29105657)
1. Gait training after spinal cord injury: safety, feasibility and gait function following 8 weeks of training with the exoskeletons from Ekso Bionics. Bach Baunsgaard C; Vig Nissen U; Katrin Brust A; Frotzler A; Ribeill C; Kalke YB; León N; Gómez B; Samuelsson K; Antepohl W; Holmström U; Marklund N; Glott T; Opheim A; Benito J; Murillo N; Nachtegaal J; Faber W; Biering-Sørensen F Spinal Cord; 2018 Feb; 56(2):106-116. PubMed ID: 29105657 [TBL] [Abstract][Full Text] [Related]
2. Against the odds: what to expect in rehabilitation of chronic spinal cord injury with a neurologically controlled Hybrid Assistive Limb exoskeleton. A subgroup analysis of 55 patients according to age and lesion level. Grasmücke D; Zieriacks A; Jansen O; Fisahn C; Sczesny-Kaiser M; Wessling M; Meindl RC; Schildhauer TA; Aach M Neurosurg Focus; 2017 May; 42(5):E15. PubMed ID: 28463613 [TBL] [Abstract][Full Text] [Related]
3. Voluntary driven exoskeleton as a new tool for rehabilitation in chronic spinal cord injury: a pilot study. Aach M; Cruciger O; Sczesny-Kaiser M; Höffken O; Meindl RCh; Tegenthoff M; Schwenkreis P; Sankai Y; Schildhauer TA Spine J; 2014 Dec; 14(12):2847-53. PubMed ID: 24704677 [TBL] [Abstract][Full Text] [Related]
4. Gait ability required to achieve therapeutic effect in gait and balance function with the voluntary driven exoskeleton in patients with chronic spinal cord injury: a clinical study. Okawara H; Sawada T; Matsubayashi K; Sugai K; Tsuji O; Nagoshi N; Matsumoto M; Nakamura M Spinal Cord; 2020 May; 58(5):520-527. PubMed ID: 31831847 [TBL] [Abstract][Full Text] [Related]
5. Initial Outcomes from a Multicenter Study Utilizing the Indego Powered Exoskeleton in Spinal Cord Injury. Tefertiller C; Hays K; Jones J; Jayaraman A; Hartigan C; Bushnik T; Forrest GF Top Spinal Cord Inj Rehabil; 2018; 24(1):78-85. PubMed ID: 29434463 [No Abstract] [Full Text] [Related]
6. The Safety and Feasibility of Exoskeletal-Assisted Walking in Acute Rehabilitation After Spinal Cord Injury. McIntosh K; Charbonneau R; Bensaada Y; Bhatiya U; Ho C Arch Phys Med Rehabil; 2020 Jan; 101(1):113-120. PubMed ID: 31568761 [TBL] [Abstract][Full Text] [Related]
7. Exoskeleton gait training after spinal cord injury: An exploratory study on secondary health conditions. Baunsgaard CB; Nissen UV; Brust AK; Frotzler A; Ribeill C; Kalke YB; León N; Gómez B; Samuelsson K; Antepohl W; Holmström U; Marklund N; Glott T; Opheim A; Penalva JB; Murillo N; Nachtegaal J; Faber W; Biering-Sørensen F J Rehabil Med; 2018 Sep; 50(9):806-813. PubMed ID: 30183055 [TBL] [Abstract][Full Text] [Related]
8. Training for mobility with exoskeleton robot in spinal cord injury patients: a pilot study. Sale P; Russo EF; Scarton A; Calabrò RS; Masiero S; Filoni S Eur J Phys Rehabil Med; 2018 Oct; 54(5):745-751. PubMed ID: 29517187 [TBL] [Abstract][Full Text] [Related]
9. An integrated gait rehabilitation training based on Functional Electrical Stimulation cycling and overground robotic exoskeleton in complete spinal cord injury patients: Preliminary results. Mazzoleni S; Battini E; Rustici A; Stampacchia G IEEE Int Conf Rehabil Robot; 2017 Jul; 2017():289-293. PubMed ID: 28813833 [TBL] [Abstract][Full Text] [Related]
10. Gait rehabilitation in persons with spinal cord injury using innovative technologies: an observational study. Stampacchia G; Olivieri M; Rustici A; D'Avino C; Gerini A; Mazzoleni S Spinal Cord; 2020 Sep; 58(9):988-997. PubMed ID: 32251368 [TBL] [Abstract][Full Text] [Related]
11. Walking improvement in chronic incomplete spinal cord injury with exoskeleton robotic training (WISE): a randomized controlled trial. Edwards DJ; Forrest G; Cortes M; Weightman MM; Sadowsky C; Chang SH; Furman K; Bialek A; Prokup S; Carlow J; VanHiel L; Kemp L; Musick D; Campo M; Jayaraman A Spinal Cord; 2022 Jun; 60(6):522-532. PubMed ID: 35094007 [TBL] [Abstract][Full Text] [Related]
12. Multicentric investigation on the safety, feasibility and usability of the ABLE lower-limb robotic exoskeleton for individuals with spinal cord injury: a framework towards the standardisation of clinical evaluations. Wright MA; Herzog F; Mas-Vinyals A; Carnicero-Carmona A; Lobo-Prat J; Hensel C; Franz S; Weidner N; Vidal J; Opisso E; Rupp R J Neuroeng Rehabil; 2023 Apr; 20(1):45. PubMed ID: 37046307 [TBL] [Abstract][Full Text] [Related]
13. Feasibility, safety, and functional outcomes using the neurological controlled Hybrid Assistive Limb exoskeleton (HAL®) following acute incomplete and complete spinal cord injury - Results of 50 patients. Aach M; Schildhauer TA; Zieriacks A; Jansen O; Weßling M; Brinkemper A; Grasmücke D J Spinal Cord Med; 2023 Jul; 46(4):574-581. PubMed ID: 37083596 [TBL] [Abstract][Full Text] [Related]
14. Overground walking with a robotic exoskeleton elicits trunk muscle activity in people with high-thoracic motor-complete spinal cord injury. Alamro RA; Chisholm AE; Williams AMM; Carpenter MG; Lam T J Neuroeng Rehabil; 2018 Nov; 15(1):109. PubMed ID: 30458839 [TBL] [Abstract][Full Text] [Related]
15. The effect of impedance-controlled robotic gait training on walking ability and quality in individuals with chronic incomplete spinal cord injury: an explorative study. Fleerkotte BM; Koopman B; Buurke JH; van Asseldonk EH; van der Kooij H; Rietman JS J Neuroeng Rehabil; 2014 Mar; 11():26. PubMed ID: 24594284 [TBL] [Abstract][Full Text] [Related]
16. Locomotor training using an overground robotic exoskeleton in long-term manual wheelchair users with a chronic spinal cord injury living in the community: Lessons learned from a feasibility study in terms of recruitment, attendance, learnability, performance and safety. Gagnon DH; Escalona MJ; Vermette M; Carvalho LP; Karelis AD; Duclos C; Aubertin-Leheudre M J Neuroeng Rehabil; 2018 Mar; 15(1):12. PubMed ID: 29490678 [TBL] [Abstract][Full Text] [Related]
17. Hybrid Assistive Limb Exoskeleton HAL in the Rehabilitation of Chronic Spinal Cord Injury: Proof of Concept; the Results in 21 Patients. Jansen O; Grasmuecke D; Meindl RC; Tegenthoff M; Schwenkreis P; Sczesny-Kaiser M; Wessling M; Schildhauer TA; Fisahn C; Aach M World Neurosurg; 2018 Feb; 110():e73-e78. PubMed ID: 29081392 [TBL] [Abstract][Full Text] [Related]
18. Gait training with the newly developed 'LokoHelp'-system is feasible for non-ambulatory patients after stroke, spinal cord and brain injury. A feasibility study. Freivogel S; Mehrholz J; Husak-Sotomayor T; Schmalohr D Brain Inj; 2008 Jul; 22(7-8):625-32. PubMed ID: 18568717 [TBL] [Abstract][Full Text] [Related]
19. Lower-limb exoskeletons for individuals with chronic spinal cord injury: findings from a feasibility study. Benson I; Hart K; Tussler D; van Middendorp JJ Clin Rehabil; 2016 Jan; 30(1):73-84. PubMed ID: 25761635 [TBL] [Abstract][Full Text] [Related]
20. Results of the first interim analysis of the RAPPER II trial in patients with spinal cord injury: ambulation and functional exercise programs in the REX powered walking aid. Birch N; Graham J; Priestley T; Heywood C; Sakel M; Gall A; Nunn A; Signal N J Neuroeng Rehabil; 2017 Jun; 14(1):60. PubMed ID: 28629390 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]