BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

239 related articles for article (PubMed ID: 29105851)

  • 1. Perovskite Solar Cells with ZnO Electron-Transporting Materials.
    Zhang P; Wu J; Zhang T; Wang Y; Liu D; Chen H; Ji L; Liu C; Ahmad W; Chen ZD; Li S
    Adv Mater; 2018 Jan; 30(3):. PubMed ID: 29105851
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Co-axial electrospray: a versatile tool to fabricate hybrid electron transporting materials for high efficiency and stable perovskite photovoltaics.
    Hameed M; Mahmood K; Imran M; Nawaz F; Mehran MT
    Nanoscale Adv; 2019 Apr; 1(4):1297-1304. PubMed ID: 36132598
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Hybrid Mesoporous TiO
    Drygała A; Starowicz Z; Gawlińska-Nęcek K; Karolus M; Lipiński M; Jarka P; Matysiak W; Tillová E; Palček P; Tański T
    Molecules; 2023 Jul; 28(15):. PubMed ID: 37570627
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Cube-like anatase TiO
    Shen D; Lan T; Zhang H; Li W; Xiong P; Li Y; Wei M
    J Colloid Interface Sci; 2023 Apr; 635():535-542. PubMed ID: 36603536
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Non-Fullerene Organic Electron-Transporting Materials for Perovskite Solar Cells.
    Jung SK; Lee DS; Ann MH; Im SH; Kim JH; Kwon OP
    ChemSusChem; 2018 Nov; 11(22):3882-3892. PubMed ID: 30259690
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Rational Design of Lewis Base Electron Transport Materials for Improved Interface Property in Inverted Perovskite Solar Cells: A Theoretical Investigation.
    Ran X; Yang J; Ali MA; Yang L; Chen Y
    Nanomaterials (Basel); 2023 May; 13(9):. PubMed ID: 37177105
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Low-Temperature Modification of ZnO Nanoparticles Film for Electron-Transport Layers in Perovskite Solar Cells.
    Han GS; Shim HW; Lee S; Duff ML; Lee JK
    ChemSusChem; 2017 Jun; 10(11):2425-2430. PubMed ID: 28419730
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Impact of absorber layer thickness, defect density, and operating temperature on the performance of MAPbI
    Ouslimane T; Et-Taya L; Elmaimouni L; Benami A
    Heliyon; 2021 Mar; 7(3):e06379. PubMed ID: 33732928
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Molecular Engineering of Hexaazatriphenylene Derivatives toward More Efficient Electron-Transporting Materials for Inverted Perovskite Solar Cells.
    Zhu R; Li QS; Li ZS
    ACS Appl Mater Interfaces; 2020 Aug; 12(34):38222-38231. PubMed ID: 32805981
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Highly crystalline Nb-doped TiO
    Lv Y; Cai B; Ma Q; Wang Z; Liu JJ; Zhang WH
    RSC Adv; 2018 Jun; 8(37):20982-20989. PubMed ID: 35542345
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Cerium-Oxide-Modified Anodes for Efficient and UV-Stable ZnO-Based Perovskite Solar Cells.
    Meng R; Feng X; Yang Y; Lv X; Cao J; Tang Y
    ACS Appl Mater Interfaces; 2019 Apr; 11(14):13273-13278. PubMed ID: 30880385
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Efficient, Hysteresis-Free, and Stable Perovskite Solar Cells with ZnO as Electron-Transport Layer: Effect of Surface Passivation.
    Cao J; Wu B; Chen R; Wu Y; Hui Y; Mao BW; Zheng N
    Adv Mater; 2018 Mar; 30(11):. PubMed ID: 29349858
    [TBL] [Abstract][Full Text] [Related]  

  • 13. ZnO-Assisted Growth of CH
    Xu J; Fang M; Chen J; Zhang B; Yao J; Dai S
    ACS Appl Mater Interfaces; 2018 Jun; 10(24):20578-20590. PubMed ID: 29798671
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Core-shell heterostructured metal oxide arrays enable superior light-harvesting and hysteresis-free mesoscopic perovskite solar cells.
    Mahmood K; Swain BS; Amassian A
    Nanoscale; 2015 Aug; 7(30):12812-9. PubMed ID: 26159238
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Rational Strategies for Efficient Perovskite Solar Cells.
    Seo J; Noh JH; Seok SI
    Acc Chem Res; 2016 Mar; 49(3):562-72. PubMed ID: 26950188
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Core-Twisted Tetrachloroperylenediimides: Low-Cost and Efficient Non-Fullerene Organic Electron-Transporting Materials for Inverted Planar Perovskite Solar Cells.
    Singh A; Chen HC; Chen YF; Lu YJ; Wong KT; Chu CW
    ChemSusChem; 2020 Jul; 13(14):3686-3695. PubMed ID: 32314499
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Stable high-performance perovskite solar cells based on inorganic electron transporting bi-layers.
    Gu H; Zhao C; Zhang Y; Shao G
    Nanotechnology; 2018 Sep; 29(38):385401. PubMed ID: 29947612
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Room Temperature Processed Double Electron Transport Layers for Efficient Perovskite Solar Cells.
    Huang W; Zhang R; Xia X; Steichen P; Liu N; Yang J; Chu L; Li X
    Nanomaterials (Basel); 2021 Jan; 11(2):. PubMed ID: 33513912
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Solution-processed barium hydroxide modified boron-doped ZnO bilayer electron transporting materials: Toward stable perovskite solar cells with high efficiency of over 20.5.
    Rehman F; Mahmood K; Khalid A; Zafar MS; Hameed M
    J Colloid Interface Sci; 2019 Feb; 535():353-362. PubMed ID: 30316122
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Non-Fullerene Organic Electron Transport Materials toward Stable and Efficient Inverted Perovskite Photovoltaics.
    Wang H; Zhang C; Yao Y; Cheng C; Wang K
    Small; 2024 Jun; ():e2403193. PubMed ID: 38924212
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.