These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
5. Asymmetric photoredox transition-metal catalysis activated by visible light. Huo H; Shen X; Wang C; Zhang L; Röse P; Chen LA; Harms K; Marsch M; Hilt G; Meggers E Nature; 2014 Nov; 515(7525):100-3. PubMed ID: 25373679 [TBL] [Abstract][Full Text] [Related]
6. Catalytic, Enantioselective Addition of Alkyl Radicals to Alkenes via Visible-Light-Activated Photoredox Catalysis with a Chiral Rhodium Complex. Huo H; Harms K; Meggers E J Am Chem Soc; 2016 Jun; 138(22):6936-9. PubMed ID: 27218134 [TBL] [Abstract][Full Text] [Related]
7. Asymmetric Catalysis with Organic Azides and Diazo Compounds Initiated by Photoinduced Electron Transfer. Huang X; Webster RD; Harms K; Meggers E J Am Chem Soc; 2016 Sep; 138(38):12636-42. PubMed ID: 27577929 [TBL] [Abstract][Full Text] [Related]
8. Asymmetric [3+2] Photocycloadditions of Cyclopropanes with Alkenes or Alkynes through Visible-Light Excitation of Catalyst-Bound Substrates. Huang X; Lin J; Shen T; Harms K; Marchini M; Ceroni P; Meggers E Angew Chem Int Ed Engl; 2018 May; 57(19):5454-5458. PubMed ID: 29543370 [TBL] [Abstract][Full Text] [Related]
9. Asymmetric Radical-Radical Cross-Coupling through Visible-Light-Activated Iridium Catalysis. Wang C; Qin J; Shen X; Riedel R; Harms K; Meggers E Angew Chem Int Ed Engl; 2016 Jan; 55(2):685-8. PubMed ID: 26629641 [TBL] [Abstract][Full Text] [Related]
10. When Light Meets Nitrogen-Centered Radicals: From Reagents to Catalysts. Yu XY; Zhao QQ; Chen J; Xiao WJ; Chen JR Acc Chem Res; 2020 May; 53(5):1066-1083. PubMed ID: 32286794 [TBL] [Abstract][Full Text] [Related]
11. Synthetic Utilization of α-Aminoalkyl Radicals and Related Species in Visible Light Photoredox Catalysis. Nakajima K; Miyake Y; Nishibayashi Y Acc Chem Res; 2016 Sep; 49(9):1946-56. PubMed ID: 27505299 [TBL] [Abstract][Full Text] [Related]
12. Preparation of chiral-at-metal catalysts and their use in asymmetric photoredox chemistry. Ma J; Zhang X; Huang X; Luo S; Meggers E Nat Protoc; 2018 Apr; 13(4):605-632. PubMed ID: 29494576 [TBL] [Abstract][Full Text] [Related]
13. Catalytic Asymmetric Csp3 -H Functionalization under Photoredox Conditions by Radical Translocation and Stereocontrolled Alkene Addition. Wang C; Harms K; Meggers E Angew Chem Int Ed Engl; 2016 Oct; 55(43):13495-13498. PubMed ID: 27667745 [TBL] [Abstract][Full Text] [Related]
14. Visible Light Mediated Photoredox Catalytic Arylation Reactions. Ghosh I; Marzo L; Das A; Shaikh R; König B Acc Chem Res; 2016 Aug; 49(8):1566-77. PubMed ID: 27482835 [TBL] [Abstract][Full Text] [Related]
15. Controlled Fluoroalkylation Reactions by Visible-Light Photoredox Catalysis. Chatterjee T; Iqbal N; You Y; Cho EJ Acc Chem Res; 2016 Oct; 49(10):2284-2294. PubMed ID: 27626105 [TBL] [Abstract][Full Text] [Related]
16. Aerobic Asymmetric Dehydrogenative Cross-Coupling between Two C(sp3)-H Groups Catalyzed by a Chiral-at-Metal Rhodium Complex. Tan Y; Yuan W; Gong L; Meggers E Angew Chem Int Ed Engl; 2015 Oct; 54(44):13045-8. PubMed ID: 26351096 [TBL] [Abstract][Full Text] [Related]
17. Enantioselective catalytic β-amination through proton-coupled electron transfer followed by stereocontrolled radical-radical coupling. Zhou Z; Li Y; Han B; Gong L; Meggers E Chem Sci; 2017 Aug; 8(8):5757-5763. PubMed ID: 28989615 [TBL] [Abstract][Full Text] [Related]
18. Photochemical Stereocontrol Using Tandem Photoredox-Chiral Lewis Acid Catalysis. Yoon TP Acc Chem Res; 2016 Oct; 49(10):2307-2315. PubMed ID: 27505691 [TBL] [Abstract][Full Text] [Related]