These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

823 related articles for article (PubMed ID: 29105857)

  • 21. Catalytic Enantioselective Radical Transformations Enabled by Visible Light.
    Saha D
    Chem Asian J; 2020 Jul; 15(14):2129-2152. PubMed ID: 32463981
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Enantioselective rhodium/ruthenium photoredox catalysis en route to chiral 1,2-aminoalcohols.
    Ma J; Harms K; Meggers E
    Chem Commun (Camb); 2016 Aug; 52(66):10183-6. PubMed ID: 27462824
    [TBL] [Abstract][Full Text] [Related]  

  • 23. A Rhodium Catalyst Superior to Iridium Congeners for Enantioselective Radical Amination Activated by Visible Light.
    Shen X; Harms K; Marsch M; Meggers E
    Chemistry; 2016 Jun; 22(27):9102-5. PubMed ID: 27145893
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Merger of visible light induced oxidation and enantioselective alkylation with a chiral iridium catalyst.
    Wang C; Zheng Y; Huo H; Röse P; Zhang L; Harms K; Hilt G; Meggers E
    Chemistry; 2015 May; 21(20):7355-9. PubMed ID: 25832794
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Fine Design of Photoredox Systems for Catalytic Fluoromethylation of Carbon-Carbon Multiple Bonds.
    Koike T; Akita M
    Acc Chem Res; 2016 Sep; 49(9):1937-45. PubMed ID: 27564676
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Radical Fluoroalkylation of Isocyanides with Fluorinated Sulfones by Visible-Light Photoredox Catalysis.
    Rong J; Deng L; Tan P; Ni C; Gu Y; Hu J
    Angew Chem Int Ed Engl; 2016 Feb; 55(8):2743-7. PubMed ID: 26797782
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Room temperature C-P bond formation enabled by merging nickel catalysis and visible-light-induced photoredox catalysis.
    Xuan J; Zeng TT; Chen JR; Lu LQ; Xiao WJ
    Chemistry; 2015 Mar; 21(13):4962-5. PubMed ID: 25688851
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Radical Carboxylative Cyclizations and Carboxylations with CO
    Ye JH; Ju T; Huang H; Liao LL; Yu DG
    Acc Chem Res; 2021 May; 54(10):2518-2531. PubMed ID: 33956436
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Asymmetric aerobic decarboxylative Povarov reactions of N-aryl α-amino acids with methylenephthalimidines via cooperative photoredox and chiral Brønsted acid catalysis.
    Li J; Gu Z; Zhao X; Qiao B; Jiang Z
    Chem Commun (Camb); 2019 Oct; 55(86):12916-12919. PubMed ID: 31603445
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Progress on all ends for carbon-carbon bond formation through photoredox catalysis.
    Peña-López M; Rosas-Hernández A; Beller M
    Angew Chem Int Ed Engl; 2015 Apr; 54(17):5006-8. PubMed ID: 25782707
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Copper(II)-Catalyzed Asymmetric Photoredox Reactions: Enantioselective Alkylation of Imines Driven by Visible Light.
    Li Y; Zhou K; Wen Z; Cao S; Shen X; Lei M; Gong L
    J Am Chem Soc; 2018 Nov; 140(46):15850-15858. PubMed ID: 30372057
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Combining the catalytic enantioselective reaction of visible-light-generated radicals with a by-product utilization system.
    Huang X; Luo S; Burghaus O; Webster RD; Harms K; Meggers E
    Chem Sci; 2017 Oct; 8(10):7126-7131. PubMed ID: 29147543
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Shining Light on Copper: Unique Opportunities for Visible-Light-Catalyzed Atom Transfer Radical Addition Reactions and Related Processes.
    Reiser O
    Acc Chem Res; 2016 Sep; 49(9):1990-6. PubMed ID: 27556932
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Indole Alkaloid Synthesis Facilitated by Photoredox Catalytic Radical Cascade Reactions.
    Liu XY; Qin Y
    Acc Chem Res; 2019 Jul; 52(7):1877-1891. PubMed ID: 31264824
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Photoredox-Catalyzed Enantioselective α-Deuteration of Azaarenes with D
    Shao T; Li Y; Ma N; Li C; Chai G; Zhao X; Qiao B; Jiang Z
    iScience; 2019 Jun; 16():410-419. PubMed ID: 31229890
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Low-oxidation state indium-catalyzed C-C bond formation.
    Schneider U; Kobayashi S
    Acc Chem Res; 2012 Aug; 45(8):1331-44. PubMed ID: 22626010
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Chiral Cyclopentadienyls: Enabling Ligands for Asymmetric Rh(III)-Catalyzed C-H Functionalizations.
    Ye B; Cramer N
    Acc Chem Res; 2015 May; 48(5):1308-18. PubMed ID: 25884306
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Enantioselective reduction of azaarene-based ketones via visible light-driven photoredox asymmetric catalysis.
    Qiao B; Li C; Zhao X; Yin Y; Jiang Z
    Chem Commun (Camb); 2019 Jul; 55(52):7534-7537. PubMed ID: 31187828
    [TBL] [Abstract][Full Text] [Related]  

  • 39. A chiral nickel DBFOX complex as a bifunctional catalyst for visible-light-promoted asymmetric photoredox reactions.
    Shen X; Li Y; Wen Z; Cao S; Hou X; Gong L
    Chem Sci; 2018 May; 9(20):4562-4568. PubMed ID: 29899949
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Catalytic asymmetric synthesis of a nitrogen heterocycle through stereocontrolled direct photoreaction from electronically excited state.
    Huang X; Li X; Xie X; Harms K; Riedel R; Meggers E
    Nat Commun; 2017 Dec; 8(1):2245. PubMed ID: 29269853
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 42.