These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
143 related articles for article (PubMed ID: 29105999)
1. Fabrication of interconnected porous β-tricalcium phosphate (β-TCP) based on a setting reaction of β-TCP granules with HNO Ishikawa K; Putri TS; Tsuchiya A; Tanaka K; Tsuru K J Biomed Mater Res A; 2018 Mar; 106(3):797-804. PubMed ID: 29105999 [TBL] [Abstract][Full Text] [Related]
2. Fabrication of self-setting β-tricalcium phosphate granular cement. Fukuda N; Tsuru K; Mori Y; Ishikawa K J Biomed Mater Res B Appl Biomater; 2018 Feb; 106(2):800-807. PubMed ID: 28370963 [TBL] [Abstract][Full Text] [Related]
3. Effects of acidic calcium phosphate concentration on setting reaction and tissue response to β-tricalcium phosphate granular cement. Fukuda N; Ishikawa K; Akita K; Kamada K; Kurio N; Mori Y; Miyamoto Y J Biomed Mater Res B Appl Biomater; 2020 Jan; 108(1):22-29. PubMed ID: 30884116 [TBL] [Abstract][Full Text] [Related]
4. Fabrication of self-setting β-TCP granular cement using β-TCP granules and sodium hydrogen sulfate solution. Eddy ; Tsuchiya A; Tsuru K; Ishikawa K J Biomater Appl; 2018 Nov; 33(5):630-636. PubMed ID: 30376757 [TBL] [Abstract][Full Text] [Related]
5. Fabrication and evaluation of interconnected porous carbonate apatite from alpha tricalcium phosphate spheres. Ishikawa K; Arifta TI; Hayashi K; Tsuru K J Biomed Mater Res B Appl Biomater; 2019 Feb; 107(2):269-277. PubMed ID: 29577584 [TBL] [Abstract][Full Text] [Related]
6. Bone regeneration using β-tricalcium phosphate (β-TCP) block with interconnected pores made by setting reaction of β-TCP granules. Putri TS; Hayashi K; Ishikawa K J Biomed Mater Res A; 2020 Mar; 108(3):625-632. PubMed ID: 31742920 [TBL] [Abstract][Full Text] [Related]
7. Fabrication of interconnected porous calcite by bridging calcite granules with dicalcium phosphate dihydrate and their histological evaluation. Ishikawa K; Koga N; Tsuru K; Takahashi I J Biomed Mater Res A; 2016 Mar; 104(3):652-658. PubMed ID: 26509820 [TBL] [Abstract][Full Text] [Related]
8. Fabrication of dicalcium phosphate dihydrate-coated β-TCP granules and evaluation of their osteoconductivity using experimental rats. Shariff KA; Tsuru K; Ishikawa K Mater Sci Eng C Mater Biol Appl; 2017 Jun; 75():1411-1419. PubMed ID: 28415432 [TBL] [Abstract][Full Text] [Related]
9. "Fabrication of arbitrarily shaped carbonate apatite foam based on the interlocking process of dicalcium hydrogen phosphate dihydrate". Sugiura Y; Tsuru K; Ishikawa K J Mater Sci Mater Med; 2017 Aug; 28(8):122. PubMed ID: 28689353 [TBL] [Abstract][Full Text] [Related]
10. Preparation and characterization of porous apatite ceramics coated with beta-tricalcium phosphate. Ioku K; Yanagisawa K; Yamasaki N; Kurosawa H; Shibuya K; Yokozeki H Biomed Mater Eng; 1993; 3(3):137-45. PubMed ID: 8193565 [TBL] [Abstract][Full Text] [Related]
12. Effect of citric acid on setting reaction and tissue response to β-TCP granular cement. Fukuda N; Tsuru K; Mori Y; Ishikawa K Biomed Mater; 2017 Feb; 12(1):015027. PubMed ID: 28233758 [TBL] [Abstract][Full Text] [Related]
13. Characterization and in vitro evaluation of biphasic α-tricalcium phosphate/β-tricalcium phosphate cement. Arahira T; Maruta M; Matsuya S Mater Sci Eng C Mater Biol Appl; 2017 May; 74():478-484. PubMed ID: 28254321 [TBL] [Abstract][Full Text] [Related]
14. Effect of precursor's solubility on the mechanical property of hydroxyapatite formed by dissolution-precipitation reaction of tricalcium phosphate. Ahmad N; Tsuru K; Munar ML; Maruta M; Matsuya S; Ishikawa K Dent Mater J; 2012; 31(6):995-1000. PubMed ID: 23207206 [TBL] [Abstract][Full Text] [Related]
15. The controlled resorption of porous alpha-tricalcium phosphate using a hydroxypropylcellulose coating. Kitamura M; Ohtsuki C; Iwasaki H; Ogata S; Tanihara M; Miyazaki T J Mater Sci Mater Med; 2004 Oct; 15(10):1153-8. PubMed ID: 15516878 [TBL] [Abstract][Full Text] [Related]
16. Microstructure, physical properties, and bone regeneration effect of the nano-sized β-tricalcium phosphate granules. Lee DS; Pai Y; Chang S; Kim DH Mater Sci Eng C Mater Biol Appl; 2016 Jan; 58():971-6. PubMed ID: 26478393 [TBL] [Abstract][Full Text] [Related]
17. Calcium phosphate cements: study of the beta-tricalcium phosphate--dicalcium phosphate--calcite cements. Mirtchi AA; Lemaître J; Munting E Biomaterials; 1990 Mar; 11(2):83-8. PubMed ID: 2156575 [TBL] [Abstract][Full Text] [Related]
18. Effects of sintering temperature on physical and compositional properties of alpha-tricalcium phosphate foam. Udoh K; Munar ML; Maruta M; Matsuya S; Ishikawa K Dent Mater J; 2010 Mar; 29(2):154-9. PubMed ID: 20379025 [TBL] [Abstract][Full Text] [Related]
19. β-TCP/DCPD-PHBV (40%/60%): Biomaterial made from bioceramic and biopolymer for bone regeneration; investigation of intrinsic properties. Monia T J Appl Biomater Funct Mater; 2022; 20():22808000221088950. PubMed ID: 35410508 [TBL] [Abstract][Full Text] [Related]
20. In vivo stability evaluation of Mg substituted low crystallinity ß-tricalcium phosphate granules fabricated through dissolution-precipitation reaction for bone regeneration. Tripathi G; Sugiura Y; Tsuru K; Ishikawa K Biomed Mater; 2018 Aug; 13(6):065002. PubMed ID: 30010092 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]