BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

240 related articles for article (PubMed ID: 29106416)

  • 1. Bayesian inference of negative and positive selection in human cancers.
    Weghorn D; Sunyaev S
    Nat Genet; 2017 Dec; 49(12):1785-1788. PubMed ID: 29106416
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Identification of coding and non-coding mutational hotspots in cancer genomes.
    Piraino SW; Furney SJ
    BMC Genomics; 2017 Jan; 18(1):17. PubMed ID: 28056774
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Cancer driver gene discovery through an integrative genomics approach in a non-parametric Bayesian framework.
    Yang H; Wei Q; Zhong X; Yang H; Li B
    Bioinformatics; 2017 Feb; 33(4):483-490. PubMed ID: 27797769
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Use of signals of positive and negative selection to distinguish cancer genes and passenger genes.
    Bányai L; Trexler M; Kerekes K; Csuka O; Patthy L
    Elife; 2021 Jan; 10():. PubMed ID: 33427197
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The FABRIC Cancer Portal: A Ranked Catalogue of Gene Selection in Tumors Over the Human Coding Genome.
    Kelman G; Brandes N; Linial M
    Cancer Res; 2021 Feb; 81(4):1178-1185. PubMed ID: 33277365
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Differential analysis between somatic mutation and germline variation profiles reveals cancer-related genes.
    Przytycki PF; Singh M
    Genome Med; 2017 Aug; 9(1):79. PubMed ID: 28841835
    [TBL] [Abstract][Full Text] [Related]  

  • 7. NIMBus: a negative binomial regression based Integrative Method for mutation Burden Analysis.
    Zhang J; Liu J; McGillivray P; Yi C; Lochovsky L; Lee D; Gerstein M
    BMC Bioinformatics; 2020 Oct; 21(1):474. PubMed ID: 33092526
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Comprehensive identification of mutational cancer driver genes across 12 tumor types.
    Tamborero D; Gonzalez-Perez A; Perez-Llamas C; Deu-Pons J; Kandoth C; Reimand J; Lawrence MS; Getz G; Bader GD; Ding L; Lopez-Bigas N
    Sci Rep; 2013 Oct; 3():2650. PubMed ID: 24084849
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Whole-exome sequencing reveals recurrent somatic mutation networks in cancer.
    Liu X; Wang J; Chen L
    Cancer Lett; 2013 Nov; 340(2):270-6. PubMed ID: 23153794
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Scanning window analysis of non-coding regions within normal-tumor whole-genome sequence samples.
    Torcivia JP; Mazumder R
    Brief Bioinform; 2021 May; 22(3):. PubMed ID: 32940334
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A compendium of mutational cancer driver genes.
    Martínez-Jiménez F; Muiños F; Sentís I; Deu-Pons J; Reyes-Salazar I; Arnedo-Pac C; Mularoni L; Pich O; Bonet J; Kranas H; Gonzalez-Perez A; Lopez-Bigas N
    Nat Rev Cancer; 2020 Oct; 20(10):555-572. PubMed ID: 32778778
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Single cell genomics reveals activation signatures of endogenous SCAR's networks in aneuploid human embryos and clinically intractable malignant tumors.
    Glinsky GV
    Cancer Lett; 2016 Oct; 381(1):176-93. PubMed ID: 27497790
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Genes, mutations, and human inherited disease at the dawn of the age of personalized genomics.
    Cooper DN; Chen JM; Ball EV; Howells K; Mort M; Phillips AD; Chuzhanova N; Krawczak M; Kehrer-Sawatzki H; Stenson PD
    Hum Mutat; 2010 Jun; 31(6):631-55. PubMed ID: 20506564
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Understanding genomic alterations in cancer genomes using an integrative network approach.
    Wang E
    Cancer Lett; 2013 Nov; 340(2):261-9. PubMed ID: 23266571
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Somatic Mutation Patterns in Hemizygous Genomic Regions Unveil Purifying Selection during Tumor Evolution.
    Van den Eynden J; Basu S; Larsson E
    PLoS Genet; 2016 Dec; 12(12):e1006506. PubMed ID: 28027311
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Genomic sequencing identifies a few mutations driving the independent origin of primary liver tumors in a chronic hepatitis murine model.
    Yang Z; Jia M; Liu G; Hao H; Chen L; Li G; Liu S; Li Y; Wu CI; Lu X; Wang S
    PLoS One; 2017; 12(11):e0187551. PubMed ID: 29117265
    [TBL] [Abstract][Full Text] [Related]  

  • 17. LARVA: an integrative framework for large-scale analysis of recurrent variants in noncoding annotations.
    Lochovsky L; Zhang J; Fu Y; Khurana E; Gerstein M
    Nucleic Acids Res; 2015 Sep; 43(17):8123-34. PubMed ID: 26304545
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Deciphering the genetic landscape of cancer--from genes to pathways.
    Copeland NG; Jenkins NA
    Trends Genet; 2009 Oct; 25(10):455-62. PubMed ID: 19818523
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Inferring primary tumor sites from mutation spectra: a meta-analysis of histology-specific aberrations in cancer-derived cell lines.
    Dietlein F; Eschner W
    Hum Mol Genet; 2014 Mar; 23(6):1527-37. PubMed ID: 24163242
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Development and analytical validation of a 25-gene next generation sequencing panel that includes the BRCA1 and BRCA2 genes to assess hereditary cancer risk.
    Judkins T; Leclair B; Bowles K; Gutin N; Trost J; McCulloch J; Bhatnagar S; Murray A; Craft J; Wardell B; Bastian M; Mitchell J; Chen J; Tran T; Williams D; Potter J; Jammulapati S; Perry M; Morris B; Roa B; Timms K
    BMC Cancer; 2015 Apr; 15():215. PubMed ID: 25886519
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.